

NCERT solutions of Triangles part 1

Question 1

In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (see below figure). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

Answer

Given, AC = AD and AB bisects ∠A To prove, $\Delta ABC \cong \Delta ABD$ <u>Proof</u>, In ΔABC and ΔABD , AB = AB (Common) AC = AD (Given) ∠CAB = ∠DAB (AB is bisector) By SAS (Side-Angle-Side) congruence condition.

Therefore, $\triangle ABC \cong \triangle ABD$.

Now from CPCT, we know that BC=BD

Question 2

ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (see Fig. 7.17). Prove that (i) \triangle ABD $\cong \triangle$ BAC (ii) BD = AC (iii) \angle ABD = \angle BAC.

Answer

Given, AD = BC and \angle DAB = \angle CBA

(i) In $\triangle ABD$ and $\triangle BAC$, AB = BA (Common) $\angle DAB = \angle CBA$ (Given) AD = BC (Given) By SAS congruence condition. So, $\triangle ABD \cong \triangle BAC$ (ii) Since, $\triangle ABD \cong \triangle BAC$ Therefore BD = AC by CPCT (iii) Since, $\triangle ABD \cong \triangle BAC$ Therefore $\angle ABD = \angle BAC$ by CPCT

Question 3

AD and BC are equal perpendiculars to a line segment AB (see below figure). Show that CD bisects AB.

Answer

Given, AD and BC are equal perpendiculars to AB. To prove, CD bisects AB <u>Proof</u>, In $\triangle AOD$ and $\triangle BOC$, $\angle A = \angle B$ (As Perpendicular) $\angle AOD = \angle BOC$ (Vertically opposite angles) AD = BC (Given)

By AAS(Angle-Angle-Side) congruence condition.

So, $\triangle AOD \cong \triangle BOC$ Now by CPCT AO = OBSo CD bisects AB.

Question 4

I and m are two parallel lines intersected by another pair of parallel lines p and q (see below figure). Show that $\triangle ABC \cong \triangle CDA$.

Answer

Given, I || m and p || q To prove, $\Delta ABC \cong \Delta CDA$ Proof, In ΔABC and ΔCDA , $\angle BCA = \angle DAC$ (Alternate interior angles) AC = CA (Common) $\angle BAC = \angle DCA$ (Alternate interior angles) By ASA(Angle-Side-Angle) congruence condition. So, $\Delta ABC \cong \Delta CDA$

Question 5

Line I is the bisector of an angle $\angle A$ and B is any point on I. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see below figure). Show that: (i) $\triangle APB \cong \triangle AQB$ (ii) BP = BQ or B is equidistant from the arms of $\angle A$.

Answer

Given, I is the bisector of an angle $\angle A$. BP and BQ are perpendiculars.

(i) In ΔAPB and ΔAQB,
∠P = ∠Q (Right angles)
∠BAP = ∠BAQ (I is bisector)
AB = AB (Common)
Therefore, ΔAPB ≅ ΔAQB by AAS congruence condition.
(ii) BP = BQ by CPCT. Therefore, B is equidistant from the arms of ∠A.

Question 6

In below figure, AC = AE, AB = AD and \angle BAD = \angle EAC. Show that BC = DE.

Answer

<u>Given</u>, AC = AE, AB = AD and \angle BAD = \angle EAC <u>To Prove</u>, BC = DE Proof, \angle BAD = \angle EAC By Adding \angle DAC both sides \angle BAD + \angle DAC = \angle EAC + \angle DAC \angle BAC = \angle EAD In \triangle ABC and \triangle ADE, AC = AE (Given)

 $\angle BAC = \angle EAD$ AB = AD (Given) By SAS (Side -Angle-Side) congruence condition.

So, $\triangle ABC \cong \triangle ADE$ By CPCT BC = DE

Question 7

AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see below figure). Show that (i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE

Answer

Given, P is mid-point of AB. \angle BAD = \angle ABE and \angle EPA = \angle DPB

(i) $\angle EPA = \angle DPB$ By Adding $\angle DPE$ both sides $\angle EPA + \angle DPE = \angle DPB + \angle DPE$ $\angle DPA = \angle EPB$ In $\triangle DAP \cong \triangle EBP$, $\angle DPA = \angle EPB$ AP = BP (P is mid-point of AB) $\angle BAD = \angle ABE$ (Given) By ASA congruence condition. So, $\triangle DAP \cong \triangle EBP$ (ii) By CPCT AD = BE

Question 8

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see below figure). Show that: (i) $\Delta AMC \cong \Delta BMD$ (ii) $\angle DBC$ is a right angle.

(iii) $\triangle DBC \cong \triangle ACB$ (iv) CM = 1/2 AB

Answer

Given, $\angle C = 90^{\circ}$, M is the mid-point of AB and DM = CM (i) In $\triangle AMC$ and $\triangle BMD$, AM = BM (M is the mid-point) \angle CMA = \angle DMB (Vertically opposite angles) CM = DM (Given) By SAS(Side-Angle-Side) congruence condition So, $\triangle AMC \cong \triangle BMD$. (ii)By CPCT ∠ACM = ∠BDM Therefore, AC || BD as alternate interior angles are equal. Now, $\angle ACB + \angle DBC = 180^{\circ}$ (co-interiors angles) $90^{\circ} + \angle B = 180^{\circ}$ $\angle DBC = 90^{\circ}$ (iii) In $\triangle DBC$ and $\triangle ACB$, BC = CB (Common) $\angle ACB = \angle DBC$ (Right angles) DB = AC (by CPCT, already proved) By (Side-Angle-Side) congruence condition. So, $\triangle DBC \cong \triangle ACB$

(iv) $DC = AB (\Delta DBC \cong \Delta ACB)$ DM = CM = AM = BM (M is mid-point) DM + CM = AM + BM CM + CM = ABCM = 1/2AB