

Assignment for Fun with Magnets

Question 1

What will happen if take magnetic compass near a bar magnetic?

- (a) The needle will deflect
- (b) The needle will not deflect
- (c) The needle will reverse the direction
- (d) None of these

Question 2

The North end of the freely suspended magnet points towards?

- (a) Geographical West
- (b) Geographical East
- (c) Geographical North
- (d) Geographical South

Question 3

Which of the following is true of magnets?

- (a) Like poles repel each other
- (b) Opposite pole attract each other
- (c) magnets has two poles (North and South)
- (d) All the above

Question 4

What is false of magnets?

- (a) Magnetic power is more in the middle of bar magnets
- (b) Magnetite is a natural magnet
- (c) Magnetic compass always aligned towards North south direction
- (d) None of the above

Question 5

A bar magnet is immersed in a heap of iron filings and pulled out. The amount of iron filling clinging to the?

- (a) North pole is almost equal to the south pole.
- (b) North pole is much more than the south pole.
- (c) North pole is much less than the south pole.
- (d) Magnet will be same all along its length.

(p)N-	(u) Attraction
Ν	
(q)S-	(v) Repulsion
N	
(r)	
S-S	
(s)	
N-S	
(a) P -	> V, Q ->U, R-> V,S-> U

Question 6

(b) P -> U, Q ->V, R-> V,S-> U (c) P -> V, Q ->U, R-> U,S-> V

(d) None of these

Question 7

The North Pole of a magnetic needle is painted

- (a) red
- (b) blue
- (c) green
- (d) black

Question 8

Statement A: Magnetism of a magnet is lost by Hampering Statement B: Magnetism of a magnet is lost by breaking it

- (a) Statement A is correct only
- (b) Statement B is correct only
- (c) Both the statement A and B are correct
- (d) Both the statement A and B are incorrect

Question 9

(p)Nickel	(u) Magnetic Material				
(q)paper	(v) Non Magnetic Material				
(r) Wood					
(s) Iron					

(a) P -> V, Q ->U, R-> V,S-> U

- (b) P -> U, Q ->V, R-> V,S-> U
- (c) P -> V, Q ->U, R-> U,S-> V

(d) None of these

Question 10

What are magnetic and nonmagnetic Materials

Question 11

What are different type of magnets? And where are the poles located

Answer:

- 1: (a)
- 2: (c) 3: (d)
- 4: (a)
- 5: (a)
- 6: (a)
- 7: (a)
- 8: (a)
- 0. (u)
- 9: (b)
- 10)

Magnetic Materials	Materials that are attracted by a magnet are called magnetic materials. Objects made of materials such as iron, cobalt and nickel are magnetic objects
Non-Magnetic Materials	Materials that are not attracted by magnets are called non-magnetic

materials. Examples of non-magnetic materials include rubber, wood, feather etc

11)

Bar Magnet	the poles are located at the ends of
	the bar
Horseshoe Magnet	the poles are located at the two free
	ends of the 'U' shape.
Cylindrical magnet	the poles are located at the two
	circular ends of the cylinder

× OV	