Capacitance Tutorial

Parallel Capacitance Circuits

When two capacitor are connected in Parallel, The equivalent capacitance is given by $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$
The voltage is same across the both the capacitor but charge is not and it depends on the capacitance

Flgure 6

Series Capacitance Circuits

When two capacitor are connected in series, the equivalent capacitance is given by
$1 / \mathrm{C}=1 / \mathrm{C}_{1}{ }^{+} 1 / \mathrm{C}_{2}$
The charge on the both the capacitor is same but Voltage is different

Figure 7

Capacitance Question

Find the equivalent capacitance of the circuit? Find the charge on the capacitor C_{1} ? Given $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}$

Solution

We need to make of parallel series capacitance formula as stated in previous slide
The Capacitor C_{2} and C_{3} are in parallel, So we can replace those capacitor by the equivalent capacitance $C_{23}=C_{2}+C_{3}=2 C$

Solution Continued

Now C_{23} and C_{1} are in series, So we can replace those capacitor by the equivalent capacitance

$$
\frac{1}{C_{n n}}=\frac{1}{C_{1}}+\frac{1}{C_{n 3}}=\frac{1}{C}+\frac{1}{2 C}=\frac{3}{2 C} .
$$

$C_{e q}=2 C / 3$
Now total charge in the circuit $(Q)=C_{e q} V=2 C V / 3$.
Now since C_{1} is in series with the whole circuit, The charge on C_{1} will be 2CV/3

For more tips and study material please visit our website http://physicscatalyst.com

