Shape of the body	Axis Of rotation	Expression for Moment of Inertia
One dimensional rod of mass M and length L	1) Center of Rod and \perp to length 2) One end and \perp to length	$\begin{gathered} \frac{M L^{2}}{12} \\ \frac{M L^{2}}{3} \\ \hline \end{gathered}$
Sphere of mass M and Radius	1) Any diameter 2) Any tangent plane	$\begin{aligned} & (2 / 5) M R^{2} \\ & (7 / 5) M R^{2} \end{aligned}$
Circular disc of Mass and radius R	1) Through center, \perp to plane of Disk 2) any diameter 3) tangent in the plane of the disc 4) tangent \perp to plane of disk	$\begin{aligned} & (1 / 2) M R^{2} \\ & (1 / 4) M R^{2} \\ & (5 / 4) M R^{2} \\ & (3 / 2) M R^{2} \end{aligned}$
Circular ring of mass M and radius R	1) Through center, \perp to plane of ring 2) any diameter 3) tangent in the plane of the ring 4) tangent \perp to plane of ring	$\begin{aligned} & M R^{2} \\ & (1 / 2) M R^{2} \\ & (3 / 2) M R^{2} \\ & 2 M R^{2} \end{aligned}$
Cylinder of mass M ,radius R and length L	1) own axis 2) through center \perp to length	$\begin{aligned} & (1 / 2) M R^{2} \\ & M\left(\frac{R^{2}}{4}+\frac{L^{2}}{12}\right) \end{aligned}$
Rectangular lamina of Mass M,length L and breath B	1) Length of lamina and in its plane 2) breath of lamina and in its plane 3) Center of lamina and \perp to its plane	$\begin{aligned} & \frac{M B^{2}}{3} \\ & \frac{M L^{2}}{3} \\ & \frac{M\left(L^{2}+B^{2}\right)}{12} \\ & \hline \end{aligned}$
Rectangular block of Mass M,Length L,Breadth B and Height H	Through center of block and parallel to Length or breadth or height of the block	$\begin{aligned} & \frac{M\left(H^{2}+B^{2}\right)}{12} \\ & \frac{M\left(L^{2}+H^{2}\right)}{12} \\ & \frac{M\left(L^{2}+B^{2}\right)}{12} \end{aligned}$

