Shape of the body	Axis Of rotation	Expression for Moment of Inertia
One dimensional rod of mass M and length L	 Center of Rod and ⊥ to length One end and ⊥ to length 	$ \frac{ML^2}{12} $ $ \frac{ML^2}{3} $
Sphere of mass M and Radius	1) Any diameter2) Any tangent plane	$(2/5)MR^2$ $(7/5)MR^2$
Circular disc of Mass and radius R	 Through center, [⊥] to plane of Disk any diameter tangent in the plane of the disc tangent [⊥] to plane of disk 	$(1/2)MR^2$ $(1/4)MR^2$ $(5/4)MR^2$ $(3/2)MR^2$
Circular ring of mass M and radius R	 Through center, ⊥ to plane of ring any diameter tangent in the plane of the ring tangent ⊥ to plane of ring 	MR^{2} $(1/2)MR^{2}$ $(3/2)MR^{2}$ $2MR^{2}$
Cylinder of mass M ,radius R and length L	1) own axis 2) through center ⊥ to length	$(1/2)MR^{2}$ $M(\frac{R^{2}}{4} + \frac{L^{2}}{12})$
Rectangular lamina of Mass M,length L and breath B	 Length of lamina and in its plane breath of lamina and in its plane Center of lamina and ⊥ to its plane 	$\frac{MB^2}{3}$ $\frac{ML^2}{3}$ $\frac{M(L^2 + B^2)}{12}$
Rectangular block of Mass M,Length L,Breadth B and Height H	Through center of block and parallel to Length or breadth or height of the block	$ \frac{M(H^{2} + B^{2})}{12} \\ \frac{M(L^{2} + H^{2})}{12} \\ \frac{M(L^{2} + B^{2})}{12} $