

## Surface Tension Worksheet

## **Derivations and definition based problems**

**Question 1** Define Surface tension and explain surface tension on the basis of molecular theory. **Question 2** Define Surface energy. Prove it is numerically equal to surface tension.

Question 3 Show that a pressure difference exists between two sides of curved liquid surface.

Question 4 Derive an expression for excess pressure

(a) Inside a liquid drop

(b) Inside a soap bubble.

**Question 5** What do you understand by the term capillarity? Give some examples of capillarity from daily life.

**Question 6** Derive an expression for the rise of liquid in capillary tube and show that the height of the liquid column supported is inversely proportional to the radius of the tube.

## **Numerical based problems**

**Question 1** Calculate the work done in blowing in a soap bubble from radius 2 cm to 3 cm. The surface tension of the soap solution is 30 dyne/cm. (Answer:- 3770.4 erg)

Question 2 The liquid drop of diameter D breaks up into 27 tiny drops. Find the resulting change in

energy. Take surface tension of liquid as  $\sigma$ . (Answer:-  $2\pi D^2 \sigma$  )

**Question 3** If 500 erg of work is done in blowing a soap bubble of a radius r, what additional work is required to be done to blow it to a radius equal to 3r? (Answer:- 4000 erg)

Question 4 Soapy water drips from capillary. When the drop breaks away, the diameter of its neck is 1 mm. The mass of the drop is 0.0129 g. Find the surface tension of the soapy water. (Answer:-

$$4.03 \times 10^{-2} N / m$$
)

Question 5 If the number of little droplets of water of surface tension  $\sigma$ , all of the radius r, combine to form a single drop of radius R and the energy released is converted into kinetic energy, find the velocity acquired by the bigger drop.

**Question 6** What should be the pressure inside a small air bubble of 0.1 mm radius, situated just below the surface? Surface tension of water =  $7.2 \times 10^{-2} N / m$  and

atmospheric pressure =  $1.013 \times 10^5 N / m^2$ 

**Question 7** Two soap bubbles have radii in ratio 2:3. Compare the excess pressure of liquid inside these bubbles. Also compare the works done in blowing these bubbles.

**Question 8** Water rises in a capillary tube to a height of 2.0 cm. In another capillary tube whose radius is one-third of it, how much the water will rise? (Answer: - 6.0 cm)

**Question 9** A small hollow sphere having a small hole in it is immersed into water to a depth of 20 cm before any water penetrates it. If the surface tension of water is 73 dynes cm<sup>-1</sup>, find the radius of the hole. (Answer:- 0.0075 cm)

**Question 10** The maximum force, in addition to the weight required to pull a wire 5 cm long from the surface of water at 20°C is 728 dynes. Calculate the surface tension of water. (Answer:- 72.8 dynes/cm) \$\$

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

