CBSE Board Short Numerical

Question 1: If the ionization energy for a hydrogen atom is 13.6 eV. What is the energy of the level with quantum number n=4?

a) -1.51eV
b) -.85eV
c) -1 eV
d) None of these

Solution: The energy of the quantum state for H is

$$E_{n} = \frac{-13.6}{n^{2}} eV$$

For n=4,
$$E_{4} = -\frac{13.6}{4^{2}} = -.85 eV$$

Question 2: To give a magnified image of a cavity a dentist holds a small mirror with a focal length of 12mm a distance 9 mm from a tooth. What will be the linear magnification obtained?

a) 4 b) 2 c) 3

d) None of these

Solution

We have

 $\frac{1}{9} + \frac{1}{x} = \frac{1}{12}$ x = -36mm

So magnification =|x/9|=4

Question 3: A coil has inductance 2 H and resistance .5 ohm. If the coil is suddenly connected across a 15V battery. Find the time required for the current to rise to .63 of its final value

a) 4 s b) 3 s c) 1 s

PHYSICSCATALYST.COM

d) none of these

Solution:

The time required is the time constant of the circuit Time constant =L/R=4 s

Question 4 : A electron and proton are free in electric field. Which one will have greater acceleration?

a) electron

b) Proton

Solution

Now we know that acceleration in electric field is given by

a=qE/m

Both the particles have same charge but different mass Electron is lighter than proton. So from above equation, electron will be faster

Question 5: A $9X10^{-10}$ F capacitor is charged by a 100 V battery. How much electrostatic energy is stored in the capacitor? a) $4.5X10^{-5}$ J

b) 5X10⁻⁶ J

c) 4X10⁻⁶ J

d) 4.5X10⁻⁶ J

Solution: Electrostatic energy is given by

$$U = \frac{1}{2}CV^2$$

Substituting all the values U=4.5X10⁻⁶ J

Question 6:

Three resistances 16, 12 and 20 Ohm are connected in parallel. What resistance must be connected in series with this combination to give a total resistance of 30 Ohm?

a) 14 ohm
b) 13.1 ohm
c)19.89 ohm
d) 25.89 ohm

Solution:

The resistance of the parallel combination (12,16 and 20) is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
$$R = 5.11\Omega$$

Now

 $R_x + R = 30$ $R_x = 25.98\Omega$

Question 7:An alternating voltage E=200sin(300t) is applied across a series of combination of R=10ohm and L=800mH.

Calculate the power factor of the circuit

a).512 b) .421 c) .5

d) .0416

Solution:

Given $E_0 = 200V$ $\omega = 300 \text{ rad/se}$ R = 10 ohmL = 800 mH = .8 H

Now impedence of the circuit is given by

$$Z = \sqrt{R^2 + (\omega L)^2} = 240.2\Omega X$$

Power factor is given by

Power factor is given by

$$\cos\phi = \frac{R}{Z} = .0416$$

Question 8: Sun an Moon emit maximum radiation at 5000 Å and 15X10⁴ Å The temperature of the Moon is 200K ,what is the temperature of Sun a) 6000K b) 5000k c)5476 K d) 7000K Solution:

By wien's displacement law, we have $\lambda_m T = cons \tan t$ So $(\lambda_m T)_{sun} = (\lambda_m T)_{moon}$ Or $T_{sun} = 6000K$

Question 9: What is the dimensional formula for induced EMF

a) $ML^2T^{-3}A^{-1}$ b) $ML^3T^{-3}A^{-1}$ c) $ML^2T^{-3}A^{-2}$ d) None of these

Solution (a)

Question 10. The current is the primary coil of the circuit is reduced from 10 A to 0 uniformly in 1 ms. Calculate the emf induced in the secondary coil of the Coefficent of Mutual inductance is 3 H

a) 10000V
b) 12000V
c) 45000V
d) 30,000V

Solution:

 $e = -M \frac{di}{dt}$ Here M=3H $\frac{di}{dt} = \frac{10}{10^{-3}} = 10,000$

So e=30000V