## CBSE Board Short Numerical

Question 1: If the ionization energy for a hydrogen atom is 13.6 eV . What is the energy of the level with quantum number $\mathrm{n}=4$ ?
a) -1.51 eV
b) -.85 eV
c) -1 eV
d) None of these

## Solution:

The energy of the quantum state for H is

$$
E_{n}=\frac{-13.6}{n^{2}} e V
$$

For $\mathrm{n}=4$,

$$
E_{4}=-\frac{13.6}{4^{2}}=-.85 \mathrm{eV}
$$

Question 2: To give a magnified image of a cavity a dentist holds a small mirror with a focal length of 12 mm a distance 9 mm from a tooth. What will be the linear magnification obtained?
a) 4
b) 2
c) 3
d) None of these

## Solution

We have
$\frac{1}{9}+\frac{1}{x}=\frac{1}{12}$
$x=-36 \mathrm{~mm}$
So magnification $=|x / 9|=4$

Question 3: A coil has inductance 2 H and resistance .5 ohm. If the coil is suddenly connected across a 15 V battery. Find the time required for the current to rise to .63 of its final value
a) 4 s
b) 3 s
c) 1 s
d) none of these

## Solution:

The time required is the time constant of the circuit
Time constant $=\mathrm{L} / \mathrm{R}=4 \mathrm{~s}$

Question 4 : A electron and proton are free in electric field. Which one will have greater acceleration?
a) electron
b) Proton

## Solution

Now we know that acceleration in electric field is given by
$\mathrm{a}=\mathrm{qE} / \mathrm{m}$
Both the particles have same charge but different mass
Electron is lighter than proton.
So from above equation, electron will be faster

Question 5: A $9 \times 10^{-10} \mathrm{~F}$ capacitor is charged by a 100 V battery. How much electrostatic energy is stored in the capacitor?
a) $4.5 \times 10^{-5} \mathrm{~J}$
b) $5 \times 10^{-6} \mathrm{~J}$
c) $4 \times 10^{-6} \mathrm{~J}$
d) $4.5 \times 10^{-6} \mathrm{~J}$

## Solution:

Electrostatic energy is given by
$U=\frac{1}{2} C V^{2}$
Substituting all the values
$\mathrm{U}=4.5 \mathrm{X} 10^{-6} \mathrm{~J}$

## Question 6:

Three resistances 16,12 and 20 Ohm are connected in parallel. What resistance must be connected in series with this combination to give a total resistance of 30 Ohm ?
a) 14 ohm
b) 13.1 ohm
c) 19.89 ohm
d) 25.89 ohm

## Solution:

The resistance of the parallel combination (12,16 and 20) is given by
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
$R=5.11 \Omega$

Now
$R_{x}+R=30$
$R_{x}=25.98 \Omega$

Question 7:An alternating voltage $\mathrm{E}=200 \sin (300 \mathrm{t})$ is applied across a series of combination of $\mathrm{R}=10 \mathrm{ohm}$ and $\mathrm{L}=800 \mathrm{mH}$.
Calculate the power factor of the circuit
a). 512
b) .421
c) .5
d) . 0416

## Solution:

Given
$\mathrm{E}_{0}=200 \mathrm{~V}$
$\omega=300 \mathrm{rad} / \mathrm{se}$
$\mathrm{R}=10$ ohm
$\mathrm{L}=800 \mathrm{mH}=.8 \mathrm{H}$
Now impedence of the circuit is given by
$Z=\sqrt{R^{2}+(\omega L)^{2}}=240.2 \Omega \mathrm{X}$
Power factor is given by
$\cos \phi=\frac{R}{Z}=.0416$
Question 8: Sun an Moon emit maximum radiation at $5000 \AA$ and $15 \mathrm{X} 10^{4} \AA$
The temperature of the Moon is 200 K , what is the temperature of Sun
a) 6000 K
b) 5000 k
c) 5476 K
d) 7000 K

Solution:
By wien's displacement law,we have

$$
\lambda_{m} T=\text { cons } \tan t
$$

So
$\left(\lambda_{m} T\right)_{\text {sun }}=\left(\lambda_{m} T\right)_{\text {moon }}$
Or
$T_{\text {sun }}=6000 \mathrm{~K}$

Question 9: What is the dimensional formula for induced EMF
a) $M L^{2} T^{-3} A^{-1}$
b) $M L^{3} T^{-3} A^{-1}$
c) $M L^{2} T^{-3} A^{-2}$
d) None of these

## Solution (a)

Question 10. The current is the primary coil of the circuit is reduced from 10 A to 0 uniformly in 1 ms . Calculate the emf induced in the secondary coil of the Coefficent of Mutual inductance is 3 H
a) 10000 V
b) 12000 V
c) 45000 V
d) $30,000 \mathrm{~V}$

## Solution:

$e=-M \frac{d i}{d t}$
Here $\mathrm{M}=3 \mathrm{H}$
$\frac{d i}{d t}=\frac{10}{10^{-3}}=10,000$
So e $=30000 \mathrm{~V}$

