

Mechanical Properties of Fluids Worksheets

Multiple Choice Questions

Question 1: A bowl of soup rests on a table in the dining car of a Rajdhani train. The acceleration of the train is g/4 in the forward direction.

What angle does the surface of the soap make with the horizontal?

- a) $\tan^{-1} 1/4$
- b) $\tan^{-1} 4$
- c) $\cos^{-1} 4$
- d) $\sin^{-1} 4$

Match the column

Question 2:

A block of ice is floating in a liquid of relative density k contained in a beaker

When the ice melts completely, match the column

Column I (k values)

- A) k>1
- B) k < 1
- C) k=1

Column II

P) Liquid level will increase

Q) Liquid level will decrease

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

- R) Liquid level will remain unchanged
- S) No appropriate match given

Linked Type comprehensions

Question -3

A body of density ρ_1 is dropped from rest at a height h into a lake of density ρ_2 ($\rho_2 > \rho_1$)

Neglect all the dissipative effects

1) Calculate the acceleration of this body while it is in the lake

a)
$$g(\frac{
ho_2}{
ho_1} - 1)$$
 Upward direction

b) $g(\frac{\rho_2}{\rho_1}-1)$ Downward direction

c)
$$g(1 - \frac{
ho_1}{
ho_2})$$
 Upward direction

d)
$$g(1 - \frac{\rho_1}{\rho_2})$$
 Downward direction

Question 4 The maximum depth to which the body sinks before returning to float on the surface is proportional to the height h

And it is given by

H=kh.

What is the value of k

a)
$$\frac{\rho_1}{\rho_2 - \rho_1}$$

b)
$$\frac{\rho_2}{\rho_2 - \rho_1}$$

c)
$$\frac{
ho_1}{
ho_2+
ho_1}$$

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

d) None of these

Linked Type Comprehension

Question 5:

Water stands at a depth h behind the vertical face of a dam. It exerts a resultant horizontal force on the dam, tending to slide it along its foundation and a torque tending to overturn the dam about the point X. The width of the dam is L.

Х

1) The resulting horizontal force acting on the dam due to water column

- a) Proportional to h²
- b) Proportional to density p
- c) Proportional to L
- d) None of these

Question 6 The torque of the forces about point X is given by

a)
$$\frac{\rho g l h^3}{3}$$

b) $\frac{\rho g l^2 h^3}{6}$
c) $\frac{\rho g l h^3}{2}$
d) $\frac{\rho g l h^3}{6}$

Multiple Choice Questions

Question 7

A piston of Weight W has the form of circular disk with radius R_1 . The disk has a hole into which a thin walled pipe with a radius R_2 is inserted. The piston can enter a cylinder tightly and without friction and it is initially at the bottom of the cylinder. M kg of water is poured into the pipe. Find the height of the piston above the bottom

a)
$$H = \frac{1}{\pi R_1^2 \rho} \left[M + \frac{W}{g} \frac{R_2^2}{R_1^2 - R_2^2} \right]$$

b)
$$H = \frac{1}{\pi R_1^2 \rho} \left[W - M \frac{R_2^2}{R_1^2 - R_2^2} \right]$$

c)
$$H = \frac{1}{\pi R_1^2 \rho} \left[M - \frac{W}{g} \frac{R_1^2}{R_1^2 - R_2^2} \right]$$

d)
$$H = \frac{1}{\pi R_1^2 \rho} \left[M - \frac{W}{g} \frac{R_2^2}{R_1^2 - R_2^2} \right]$$

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

1

Question 8:

A tank contains water on top of mercury. A cube of iron .06 m along each edge is sitting upright in equilibrium in the liquid.

Density of iron =7.7X10³ kg/m³

Density of mercury = $13.6X10^3$ kg/m³

Which one of the following is true

- a) x=32mm and y=28mm
- b) The pressure difference (p_2 - p_1) is 4632 N/m²
- c) The weight of the mercury cube is 16.632 g
- d) None of these