

Application of Derivatives Exercise 6.2

Question 1

Show that the function given by f(x) = 3x + 17 is strictly increasing on R.

Solution

f(x) = 3x + 17

Differentiating w.r.t x

f'(x) = 3 > 0, in every interval of R.

Thus, the function is strictly increasing on R.

Question 2

Show that the function given by $f(x) = e^{2x}$ is strictly increasing on R.

Solution

 $f(x) = e^{2x}$

Differentiating w.r.t x

 $f'(x) = 2e^{2x} > 0$, in every interval of R.

Hence, f is strictly increasing on R.

Question 3

Show that the function given by $f(x) = \sin x$ is

- (a) strictly increasing in (0, $\pi/2$)
- (b) strictly decreasing in ($\pi/2, \pi$)
- (c) neither increasing nor decreasing in $(0, \pi)$

Solution

The given function is $f(x) = \sin x$.

Differentiating w.r.t x

f'(x) = cosx

(a) Since for each (0, $\pi/2$) we have $\cos x > 0$

Hence, f is strictly increasing in (0, $\pi/2$)

(b) Since for each ($\pi/2, \pi$), we have $\cos x < 0$

Hence, f is strictly decreasing in ($\pi/2, \pi$)

(c) From the results obtained in (a) and (b), it is clear that f is neither increasing nor

decreasing in (0, π).

Question 4

Find the intervals in which the function f given by $f(x) = 2x^2 - 3x$ is

(a) strictly increasing (b) strictly decreasing

Solution

 $f(x) = 2x^2 - 3x$

Differentiating w.r.t x

f'(x) =4x-3

Equating f'(x) = 0, we get

4x-3 =0

X= ⅔

The point x = 3/4 divides the real line into two disjoint intervals, namely, $(-\infty, 3/4)$, $(3/4, \infty)$ In interval $(-\infty, 3/4)$, f'(x) < 0

Hence, the given function (f) is strictly decreasing in interval (– ∞ , 3/4)

In interval $(3/4, \infty)$, f'(x) > 0 Hence, the given function (f) is strictly increasing in interval $(3/4, \infty)$

Question 5

Find the intervals in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is

(a) strictly increasing (b) strictly decreasing

Solution

 $f(x) = 2x^3 - 3x^2 - 36x + 7$

Differentiating w.r.t x

 $f'(x) = 6x^2 - 6x - 36$

Equating f'(x) = 0, we get

6x²-6x-36=0

Or x = - 2, 3

The points x = -2 and x = 3 divide the real line into three disjoint intervals i.e., $(-\infty, -2)$, (-2, 3) and $(3, \infty)$

In intervals is positive $(-\infty, -2)$, $(3, \infty)$, f'(x) > 0

```
while in interval (-2, 3), is negative, f'(x) < 0
```

Hence, the given function (f) is strictly increasing in intervals (– ∞ , -2), (3, ∞)

, while function (f) is strictly decreasing in interval (-2, 3),

Question 6

Find the intervals in which the following functions are strictly increasing or decreasing:

- (a) x²+ 2x 5
- (b) $10 6x 2x^2$
- (c) $-2x^3 9x^2 12x + 1$
- (d) $6 9x x^2$
- (e) $(x + 1)^3(x 3)^3$

Solution

(a) We have,

 $F(x) = x^2 + 2x - 5$

Differentiating w.r.t x

f'(x) = 2x+2

Equating f'(x) =0, we get

2x+2=0

x = -1

Point x = -1 divides the real line into two disjoint intervals i.e., (– ∞ , -1) and (-1, ∞)

In interval (– ∞ , -1), f'(x) < 0

f is strictly decreasing in interval (– ∞ , -1)

In interval (-1, ∞), f'(x) > 0

f is strictly increasing in interval (-1, ∞)

(b) We have,

 $f(x) = 10 - 6x - 2x^2$

Differentiating w.r.t x

f'(x) =-6-4x

Equating f'(x) = 0, we get

-6-4x=0

```
x=-3/2
```

The point divides the real line into two disjoint intervals i.e., $(-\infty, -3/2)$ and $(-3/2, \infty)$

In interval (– ∞ , -3/2), f'(x) > 0

f is strictly increasing for $(-\infty, -3/2)$

In interval $(-3/2,\infty)$, f'(x) < 0

f is strictly decreasing for $(-3/2,\infty)$

(c) We have,

 $f(x) = -2x^3 - 9x^2 - 12x + 1$

Differentiating w.r.t x

 $f'(x) = -6x^2 - 18x - 12 = -6(x+1)(x+2)$

Equating f'(x) = 0, we get

-6x²-18x-12=0

 x^{2} +3x +2 =0

(x+1)(x+2) =0

Or x=-1, -2

Points x = -1 and x = -2 divide the real line into three disjoint intervals i.e., $(-\infty, -2)$, (-2, -1) and $(-1, \infty)$

In intervals, i.e., when x < -2 and x > -1, f'(x) < 0

f is strictly decreasing for x < -2 and x > -1.

Now, in interval (-2, -1) i.e., when -2 < x < -1, f'(x) > 0

```
f is strictly increasing for -2 < x < -1
```

(d) We have,

 $F(x) = 6 - 9x - x^2$

Differentiating w.r.t x

f'(x) =-9-2x

Equating f'(x) = 0, we get

x= -9/2

The point divides the real line into two disjoint intervals i.e., $(-\infty, -9/2)$ and $(-9/2, \infty)$

In interval (– ∞ , -9/2), f'(x) > 0

f is strictly increasing for $(-\infty, -9/2)$

In interval $(-9/2, \infty)$, f'(x) < 0

f is strictly decreasing for (-9/2, ∞)

(e) We have,

 $f(x) = (x + 1)^3(x - 3)^3$

Differentiating w.r.t x

 $f'(x) = 3(x + 1)^2(x - 3)^3 + 3(x + 1)^3(x - 3)^2$

 $=3(x+1)^{2}(x-3)^{2}[x-3+x+1]$

 $=6(x+1)^{2}(x-3)^{2}(x-1)$

Equating f'(x) =0, we get

x = -1 or 3 or 1

The points x = -1, x = 1, and x = 3 divide the real line into four disjoint intervals.

i.e. $(-\infty, -1)$, (-1, 1), (1, 3), and $(3, \infty)$

In intervals and (-1, 1), $(-\infty, -1)$, f'(x) < 0

f is strictly decreasing in intervals and (-1, 1).

In intervals (1, 3) and (3, ∞), f'(x) > 0

f is strictly increasing in intervals (1, 3) and $(3, \infty)$

Question 7

Show that $y = \log(1+x) - 2x/(2+x) x > 1$ is an increasing function of x throughout its

domain.

Solution

We have,

 $y = \log(1+x) - 2x/(2+x)$

Differentiating w.r.t x

 $\frac{dy}{dx} = \frac{1}{1+x} - \frac{(2+x)2 - 2x(1)}{(2+x)^2} = \frac{x^2}{(2+x)^2}$

Equating dy/dx = 0, we get

 $x^{2}/(2+x)^{2}=0$

or x =0 as x >-1

Since x > -1, point x = 0 divides the domain (-1, ∞) in two disjoint intervals i.e., -1 <

x < 0 and x > 0.

When -1 < x < 0, we have dy/dx > 0

Also, when x > 0, we have dy/dx > 0

Hence, function f is increasing throughout this domain.

Question 8

Find the values of x for which $y = [x (x - 2)]^2$ is an increasing function.

Solution

We have,

$$y = [x (x - 2)]^2$$

$$y=(x^2-2x)^2=x^4+4x^2-4x^3$$

Differentiating w.r.t x

 $dy/dx = 4x^3 + 8x - 12x^2$

Equating dy/dx = 0, we get

4x (x² +2-3x) =0

4x(x-1) (x-2) =0

The points x = 0, x = 1, and x = 2 divide the real line into four disjoint intervals i.e.,

(−∞,0),(0,1),(1,2) (2,∞)

In intervals $(-\infty,0),(1,2)$, dy/dx < 0

y is strictly decreasing in intervals, dy/dx

However, in intervals (0, 1) and $(2, \infty)$, dy/dx > 0

y is strictly increasing in intervals (0, 1) and (2, ∞).

Question 9

$$y = \frac{4\sin\theta}{(2+\cos\theta)} - \theta$$
Prove that

is an increasing function of θ in $[0, \pi/2]$

Solution

We have,

$$y = \frac{4 \sin \theta}{(2 + \cos \theta)} - \theta$$

Differentiating w.r.t θ

$$\frac{dy}{d\theta} = \frac{(2 + \cos \theta) (4 \cos \theta) - (4 \sin \theta)(-\sin \theta)}{(2 + \cos \theta)^2} - 1 = \frac{8 \cos \theta + 4}{(2 + \cos \theta)^2} - 1$$

Equating dy/d $\theta = 0$, we get

$$\frac{8 \cos \theta + 4}{(2 + \cos \theta)^2} - 1 = 0$$

 $8 \cos \theta + 4 = (2 + \cos \theta)^2$
 $8 \cos \theta + 4 = (2 + \cos \theta)^2$
 $8 \cos \theta + 4 = (2 + \cos \theta)^2$
 $8 \cos \theta + 4 = 4 + 4\cos \theta + \cos^2 \theta$
 $\cos^2 \theta - 4\cos \theta = 0$
 $\cos \theta (\cos \theta - 4)$
Since $\cos \theta \neq 4$, $\cos \theta = 0$.
Or $\theta = \pi/2$
Now,

$$\frac{dy}{d\theta} = \frac{8 \cos \theta + 4}{(2 + \cos \theta)^2} - 1 = \frac{8 \cos \theta + 4 - (4 + \cos^2 \theta + 4\cos \theta)}{(2 + \cos \theta)^2} = \frac{4 \cos \theta - \cos^2 \theta}{(2 + \cos \theta)^2} = \frac{\cos \theta (4 - \cos \theta)}{(2 + \cos \theta)^2}$$

In interval (0, $\pi/2$) we have $\cos \theta > 0$. Also, $4 > \cos \theta$, $4 - \cos \theta > 0$

So dy/d θ > 0

Therefore, y is strictly increasing in interval (0, $\pi/2$)

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

A

Also, the given function is continuous at 0 and $\pi/2$

Hence, y is increasing in interval $[0, \pi/2]$

Question 10

Prove that the logarithmic function is strictly increasing on $(0, \infty)$.

Solution

 $F(x) = \log x$

Differentiating w.r.t x

f'(x) = 1/x

It is clear that for x > 0, f'(x) > 0

Hence, $f(x) = \log x$ is strictly increasing in interval $(0, \infty)$.

Question 11

Prove that the function f given by $f(x) = x^2 - x + 1$ is neither strictly increasing nor strictly decreasing on (-1, 1).

Solution

 $f(x) = x^2 - x + 1$

Differentiating w.r.t x

f'(x) =2x -1

Equating f'(x) = 0, we get

2x-1 = 0

x= 1/2

The point divides the interval (-1, 1) into two disjoint intervals $(-1, \frac{1}{2})$ and $(\frac{1}{2}, 1)$

Now, in interval $(-1, \frac{1}{2})$, f'(x) = 2x - 1 < 0

Therefore, f is strictly decreasing in interval (-1, 1/2)

However, in interval $(\frac{1}{2},1)$, f'(x) =2x -1 > 0

Therefore, f is strictly increasing in interval (½,1)

Hence, f is neither strictly increasing nor decreasing in interval (-1, 1).

Question 12

Which of the following functions are strictly decreasing on $(0, \pi/2)$?

(A) cos x (B) cos 2x (C) cos 3x (D) tan x

Solution

(A) Let $f(x) = \cos x$

 $f'(x) = -\sin x$

In interval (0, $\pi/2$), f'(x) < 0

So, f(x) is strictly decreasing in interval (0, $\pi/2$)

(B) Let

 $F(x) = \cos 2x$

 $f'(x) = -2 \sin 2x$

for x in (0, $\pi/2$), 2x would in (0, π), So sin2x > 0

and $f'(x) = -2 \sin 2x < 0$

So, cos 2x is strictly decreasing in interval (0, $\pi/2$)

(C) Let $f(x) = \cos 3x$

 $f'(x) = -3 \sin 3x$

Equating f'(x)=0

Sin 3x =0

Or x = $\pi/3$ as x in (0, $\pi/2$)

The point divides the interval into two disjoint intervals (0, $\pi/3$) and ($\pi/3$, $\pi/2$)

For interval $(0, \pi/3)$, $f'(x) = -3 \sin 3x < 0$

So, it is strictly decreasing in interval (0, $\pi/3$)

For interval $(\pi/2, \pi/3)$, $f'(x) = -3 \sin 3x > 0$

So, it is strictly increasing in interval ($\pi/2$, $\pi/3$),

Hence, function is neither increasing nor decreasing in interval (0, $\pi/2$)

(D) Let

f(x) = tan x

$$f'(x) = \sec^2 x$$

for interval (0, $\pi/2$), f'(x) > 0

So, function is strictly increasing in interval (0, $\pi/2$)

Therefore, functions $\cos x$ and $\cos 2x$ are strictly decreasing in $(0, \pi/2)$

Hence, the correct answers are A and B.

Question 13

On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ strictly

decreasing?

(A) (0,1)

(Β) (π/2, π)

(C) (0, π/2)

(D) None of these

Solution

We have,

 $f(x) = x^{100} + \sin x - 1$

 $f'(x) = 100x^{99} + \cos x$

In interval (0,1), f'(x) > 0 as $\cos x > 0$ and $100x^{99} > 0$

Thus, function f is strictly increasing in interval (0, 1).

In interval ($\pi/2$, π), cos x < 0 and $100x^{99} > 0$ and $100x^{99} > \cos x$, So f'(x) > 0

Thus, function f is strictly increasing in interval $(\pi/2, \pi)$

In interval (0, $\pi/2$), cos x > 0 and $100x^{99} > 0$, So f'(x) > 0

f is strictly increasing in interval (0, $\pi/2$)

Hence, function f is strictly decreasing in none of the intervals.

The correct answer is D.

Question 14

Find the least value of a such that the function f given $f(x) = x^2 + ax + 1$ is strictly increasing on (1, 2).

Solution

We have,

 $f(x) = x^2 + ax + 1$

f'(x) = 2x+a

Now, function f will be increasing in (1, 2), if in (1, 2), f'(x) > 0

2x + a > 0

2x > -a

Now x lies in (1,2), So the least value of a such that

-a/2 =1

a=-2

Hence, the required value of a is -2.

Question 15

Let I be any interval disjoint from (-1, 1). Prove that the function f given by

F(x) = x + 1/x is strictly increasing on I.

Solution

f(x) = x + 1/x

 $f'(x) = 1 - 1/x^2$

 $1 - 1/x^2 = 0$

x² =1

or x =+1, -1

The points x = 1 and x = -1 divide the real line in three disjoint intervals i.e., $(-\infty, -1)$, (-1, 1) and $(1, \infty)$ In interval (-1, 1), it is observed that

x² < 1

 $1/x^2 > 1$

Or $0 > 1 - 1/x^2$ (x $\neq 0$)

f is strictly decreasing on (-1, 1)

In intervals (- ∞ , -1) and (1, ∞), it is observed that:

x² > 1

 $1/x^{2} < 1$

$$1 - 1/x^2 > 0$$

f is strictly increasing on (- $\infty,$ -1) and (1, $\infty)$

Hence, function f is strictly increasing in interval I disjoint from (-1, 1).

Hence, the given result is proved.

Question 16

Prove that the function f given by $f(x) = \log \sin x$ is strictly increasing on $(0, \pi/2)$

And strictly decreasing on $(\pi/2, \pi)$

Solution

 $f(x) = \log \sin x$

 $f'(x) = (1/\sin x) \cos x = \cot x$

In interval (0, $\pi/2$), f'(x) =cot x > 0

f is strictly increasing in $(0, \pi/2)$

In interval ($\pi/2$, π), f'(x) =cot x < 0

f is strictly decreasing in $(\pi/2, \pi)$

Question 17

Prove that the function f given by $f(x) = \log \cos x$ is strictly decreasing on $(0, \pi/2)$

And strictly increasing on $(\pi/2, \pi)$

Solution

 $f(x) = \log \cos x$

 $f'(x) = (1/\cos x) (-\sin x) = -\tan x$

In interval (0, $\pi/2$), f'(x) = -tan x < 0

f is strictly decreasing on $(0, \pi/2)$

In interval $(\pi/2, \pi)$, f'(x) = -tan x > 0

<u>f is strictly increasing on $(\pi/2, \pi)$ </u>

Question 18

Prove that the function given by $f(x) = x^3 - 3x^2 + 3x - 100$ is increasing in R.

Solution

$$f(x) = x^3 - 3x^2 + 3x - 100$$

$$f'(x) = 3x^2 - 6x + 3 = 3(x-1)^2$$

For any x in R, $(x - 1)^2 > 0$.

Hence, the given function (f) is increasing in R.

Question 19

The interval in which $y = x^2 e^{-x}$ is increasing is

(A) $(-\infty, \infty)$

- (B) (-2, 0)
- (C) (2, ∞)
- (D) (0, 2)

Solution

$$y = x^2 e^{-x}$$

 $dy/dx = 2x e^{-x} - x^2 e^{-x} = xe^{-x}(2-x)$

for dy/dx=0

x= 0 or x =2

The points x = 0 and x = 2 divide the real line into three disjoint intervals

i.e., (- ∞ ,0) , (0 ,2) and (2, ∞)

In intervals $(-\infty,0)$, $(2,\infty)$, dy/dx < 0

f is decreasing on (- ∞ ,0), (2, ∞),

In interval (0, 2), dy/dx > 0

f is strictly increasing on (0, 2).

Hence, f is strictly increasing in interval (0, 2).

The correct answer is D.