

Differential equations

Determine order and degree (if defined) of differential equation

Question 6)

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

$$(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$$

Question 7)

$$y''' + 2y'' + y' = 0$$

Question 8)

$$y' + \dot{y} = e^x$$

Question 9)

$$y'' + (y')^2 + 2y = 0$$

Question 10)

$$y'' + 2y' + \sin y = 0$$

Solutions

S.no	Order	Degree
1	The highest order derivative present in the	The given differential equation is not a
	differential equation is y"". So, its	polynomial equation in its derivatives.
	order is four	Hence, its
		degree is not defined
2	The highest order derivative present in the	It is a polynomial equation in dy/dx .
	differential equation is dy/dx . So, its order	The highest power raised to is 1.
		Hence, its degree is one
	is one.	
3	The highest order derivative present in the given	It is a polynomial equation in d ² s/dt ²
	differential equation is d ² s/dt ² . So, its order is two	and ds/dt . The power raised to d^2s/dt^2
		1

2

		is 1.
		Hence, its degree is one
1	The highest order derivative present in the given	The given differential equation is not a
4	differential equation is $d^2 v/dv^2$. So	nolynomial equation in its derivatives
		Hence its
	its order is 2	hence, its
		degree is not defined
5	The highest order derivative present in the	It is a polynomial equation in d^2y/dx^2
	differential equation is d^2y/dx^2 . So, its	and the power raised to $d^2\gamma/dx^2$ is 1.
	and an in taxo	
	order is two	Hence, its degree is one
6	The highest order derivative present in the	The given differential equation is a
	differential equation is y^{m} . So, its order is three	polynomial equation in y^{m} , y^{r} and y^{r}
		The highest power raised to is 2.
		Hence, its degree is 2
7	The highest order derivative present in the	The given differential equation is a
	differential equation is y . So, its order is three	polynomial equation in y , y and y
		The highest power raised to is 1.
	r O	Hence, its degree is 1
8	The highest order derivative present in the	The given differential equation is a
	differential equation is y' . So, its order is one.	polynomial equation in y' and the
		highest power raised to is one. Hence,
		its degree is one.
9	The highest order derivative present in the	The given differential equation is a
	differential equation is y'' . So, its order is two.	polynomial equation in y'' and y' and
		the highest power raised to is one.
1		
		Hence, its degree is one.
10	The highest order derivative present in the	Degree is one
	differential equation is $y^{"}$. So , its	-
	order is two.	

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

Question 11)

The degree of the differential equation

$$\left(\frac{d^2 y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$$
 is

(A) 3

(B) 2

(C) 1

(D) not defined

Solution

The given differential equation is not a polynomial equation in its derivatives. Therefore,

its degree is not defined.

Hence, the correct answer is D.

Question 12)

The order of the differential equation

$$2x^2 \frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} + y = 0$$
 is

(A) 2

(B) 1

(C) 0

(D) not defined

Solution

The highest order derivative present in the given differential equation is d^2y/dx^2 . Therefore,

its order is two.

So, the correct answer is A.

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.