

Differential equations

In each of the Exercises 1 to 10 verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation

Question 1:

 $y = e^x + 1$: y'' - y' = 0

Solution

y= e^x + 1

Differentiating both sides of this equation with respect to x, we get:

Now, differentiating equation (1) with respect to x, we get:

y" =e^x

Substituting the values of in the given differential equation, we get the L.H.S.

as:

```
e<sup>x</sup> -e<sup>x</sup> =0
```

Thus, the given function is the solution of the corresponding differential equation.

Question 2:

 $y=x^2+2x+C$: (dy/dx) -2x - 2 = 0

Solution

Differentiating both sides of this equation with respect to x, we get:

(dy/dx) = 2x + 2

Substituting the value in the given differential equation, we get:

L.H.S. =

(dy/dx) - 2x - 2 = 0

=(2x+2) -2x-2=0

= R.H.S.

So, the given function is the solution of the corresponding differential equation.

Question 3:

 $y = \cos x + C$: $(dy/dx) + \sin x = 0$

Solution

Differentiating both sides of this equation with respect to x, we get:

 $(dy/dx) = -\sin x$

Substituting the value in the given differential equation, we get:

L.H.S. =

(dy/dx) +sin x

```
=-sin x + sin x
```

=0

So, the given function is the solution of the corresponding differential equation.

Question 4:

$$y = \sqrt{1 + x^2}$$
 : $y' = \frac{xy}{1 + x^2}$

Solution

Differentiating both sides of the equation with respect to x, we get:

$$\frac{dy}{dx} = \frac{1}{2\sqrt{1+x^2}} \frac{d}{dx} (1+x^2)$$
$$\frac{dy}{dx} = \frac{x}{\sqrt{1+x^2}}$$

 $\frac{dy}{dx} = \frac{x}{y}$ $\frac{dy}{dx} = \frac{x}{y} \times \frac{y}{y} = \frac{xy}{(1+x^2)}$

So, the given function is the solution of the corresponding differential equation.

Question 5:

y = Ax: x(dy/dx) = y (x \neq 0)

Solution

Differentiating both sides with respect to x, we get:

dy/dx = A

Substituting the value of in the given differential equation, we get:

LHS

=x(dy/dx)

=Ax

=y

```
=RHS
```

So, the given function is the solution of the corresponding differential equation.

Question 6:

$$y = x \sin x$$
 : $xy' = y + x \sqrt{x^2 - y^2}$ ($x \neq 0$ and $x > y$ or $x < -y$)

Solution

Differentiating both sides of this equation with respect to x, we get:

$dy/dx = \sin x + x \cos x$

Substituting the value in the given differential equation, we get:

LHS

=x(dy/dx)

 $= x(\sin x + x \cos x)$

 $=x \sin(x) + x^2 \cos(x) - (1)$

Now we know that

 $\cos^2 x = 1 - \sin^2 x$

 $\cos(x) = \sqrt{1 - \sin^2 x}$

Now we know that

 $y=x \sin x$ or $\sin (x) = y/x$

Therefore

 $\cos(x) = \sqrt{[1-(y/x)^2]} - (2)$

Substituting the value from (2) in (1)

 $=x \sin(x) + x^2 \sqrt{1 - (y/x)^2}$

$$= y + x \sqrt{x^2 - y^2}$$

=RHS

Hence, the given function is the solution of the corresponding differential equation.

Question 7:

 $xy = \log y + c$: $dy/dx = y^2 / (1-xy)$, $xy \neq 0$

Solution

Differentiating both sides of this equation with respect to x, we get:

$$y + x (dy/dx) = (1/y) (dy/dx)$$

$$y^2 + xy (dy/dx) = (dy/dx)$$

or

 $dy/dx = y^2 / (1-xy)$

Hence, the given function is the solution of the corresponding differential equation.

Question 8:

 $y - \cos y = x$: $(y \sin y + \cos y + x)y' = y$

Solution

Differentiating both sides of the equation with respect to x, we get:

$$(dy/dx) + \sin y (dy/dx) = 1$$

Or

 $dy/dx = 1/(1+\sin y)$

Substituting the value of in differential equation

LHS

$$= (y \sin y + \cos y + x) y'$$

$$=(ysin y + cos y + y - cos y) [1/(1+sin y)]$$

$$= y(1 + \sin y) [1/(1 + \sin y)]$$

= y

$$=RHS$$

Hence, the given function is the solution of the corresponding differential equation.

Question 9:

 $x + y = \tan^{-1} y$: $y^2 (dy/dx) + y^2 + 1 = 0$

Solution

Differentiating both sides of this equation with respect to x, we get:

$$1 + (dy/dx) = [1/(1+y^2)] (dy/dx)$$

$$1+y^2 (dy/dx) + (dy/dx) + y^2 = (dy/dx)$$

Or

 $y^{2}(dy/dx) + y^{2} + 1 = 0$

So, the given function is the solution of the corresponding differential equation.

Question 10:

 $y=v(a^2 - x^2) x \in (-a,a) : x + y(dy/dx) = 0 (y \neq 0)$

Solution

Differentiating both sides of this equation with respect to x, we get:

$$\frac{dy}{dx} = \frac{1}{2\sqrt{a^2 - x^2}} \frac{d}{dx} (a^2 - x^2)$$
$$\frac{dy}{dx} = \frac{-2x}{2\sqrt{a^2 - x^2}}$$
$$\frac{dy}{dx} = \frac{-x}{\sqrt{a^2 - x^2}}$$
Now y=V(a² - x²)

So

$$\frac{dy}{dx} = \frac{-x}{y}$$

x + y(dy/dx) = 0

So, the given function is the solution of the corresponding differential equation.

Question 11:

The numbers of arbitrary constants in the general solution of a differential equation of

fourth order are:

(A) 0

(B) 2

(C) 3

(D) 4

Solution

We know that the number of constants in the general solution of a differential equation

of order n is equal to its order.

Therefore, the number of constants in the general equation of fourth order differential

equation is four.

Hence, the correct answer is D.

Question 12:

The numbers of arbitrary constants in the solution of a differential equation of

third order are:

- (A) 3
- (B) 2
- (C) 1
- (D) 0

Solution

In a solution of a differential equation, there are no arbitrary constants.

Hence, the correct answer is D.