

POLYNOMIAL FORMATIVE ASSIGNMENTS

Match the column

Degree of polynomial	Polynomial
1	x ⁵ -3x ² +1
2	x -1
3	$x^{4}-3x^{2}+2+3x^{3}$
4	x ² -2x-1
5	1-3x ³

Match the column

type of polynomial	Polynomial
monomial	X ³ -4x ² +1
binomial	x-1
trinomial	$x^{4}-3x^{2}+2+3x^{3}$
No appropriate match	x ² -2
	3x ³

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only

.

Table Type

 $P(x)=5x^3-3x^2+7x+2$

P(0)	P(1)	P(5)	P(-1)	P(-2)
				A

Multiple choice Questions

1) Find the remainder when $x^4+x^3-2x^2+x+1$ is divided by x-1

- a)1
- b)5
- c)2
- d)3

Solution (c)

2) Which of these identities is not true?

a)
$$(x + y)^2 = x^2 + 2xy + y^2$$

b) $(x-y)^2 = x^2 - 2xy + y^2$

c)
$$x^2 - y^2 = (x + y)(x - y)$$

d)
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 3xyz$$

Solution (d)

True or False statement

- 1) P(x) = x-1 and $g(x) = x^2-2x + 1$. p(x) is a factor of g(x)
- 2) The factor of $3x^2 x 4$ are (x+1)(3x-4)
- 3) Every linear polynomial has only one zero
- 4) Every real number is the zero's of zero polynomial
- 5) A binomial may have degree 6

- 6) 1,2 are the zeroes of x^2-3x+2
- 7) The degree of zero polynomial is not defined
- 8) Graph of polynomial (x^2-1) meets the x-axis at one point
- 9) Graph of constant polynomial never meets x axis

Solution

- 1) True, as g(1)=0
- 2) True, we can get this by split method
- 3) True
- 4) True
- 5) True , example $x^6 + 1$
- 6) True
- 7) True
- 8) False as it meets at two points
- 9) True

Factorize following

- a) x² +9x+18
- b) $3x^3 x^2 3x + 1$
- c) x³-23x²+142x-120
- d) 1+8x³

Solution

- a) (x+6)(x+3)
- b))(3x-1)(x-1)(x+1)
- c)(x-1)(x-10)(x-12)
- d) $(2x+1)(4x^2-2x+1)$

5

Solution

- a) it cuts the x-axis at two points ,so 2 zeroes
- b) it cuts the x-axis at four points ,so 4 zeroes
- c) Since it does not cut the axis, so 0 zeroes
- d) it cuts the x-axis at 1 points ,so 1 zero's
- e) it cuts the x-axis at 1 points ,so 1 zero's
- f) Since it does not cut the axis, so 0 zeroes

- g) Since it does not cut the axis, so 0 zeroes
- h) it cuts the x-axis at two points ,so 2 zeroes

Match the column

Graph of polynomial	Type of polynomial
	Linear polynomial
	Quadratic polynomial
	Cubic polynomial
	Constant polynomial

A

Solution

- a) Quadratic as parabola
- b) Three zeroes, So cubic polynomial
- c) Contant value polynomial
- d) Linear polynomial
- e) One zeroes but not straight line. So no appropriate match found

8

- f) Quadratic as parabola
- g) Quadratic as parabola
- e) Cubic as has three zeroes ,two of them same

Multiple Choice Questions

- 1) If and b are the zeroes of the polynomial $x^2-11x + 30$, Find the value of $a^3 + b^3$
 - a)134
 - b)412
 - c)256
 - d)341

Solution

```
a^{3} + b^{3} = (a+b) (a^{2}+b^{2}-ab)=(a+b) {(a+b)^{2}-3ab}
```

```
Now a+b=-(-11)/1=11
```

ab=30

```
So a<sup>3</sup>+b<sup>3</sup>=11( 121 -90)=341
```

```
2) S(x) = px^2+(p-2)x + 2. If 2 is the zero of this polynomial, what is the value of p
```

a)-1

b)1/2

- c) -1/2
- d)+1

Solution

S(2)=4p+0+2=0 => p=-1/2

- 3) if the zeroes of the quadratic equation are 11 and 2, what is expression for quadratic
- a) x²-13x+22
- b) x²-11x+22
- c) x²-13x-22
- d) x²+13x-22

Solution (a)

P(x) = (x-11)(x-2)

4) $p(x) = x^4 - 6x^3 + 16x^2 - 25x + 10$

 $q(x) = x^2 - 2x + k$

It is given

p(x) = r(x) q(x) + (x+a)

Find the value of k and a

- a) 2,-2
- b) 5 ,-5
- c) 7,3

d) 3,-1

Solution (b)

Dividing p(x) by q(x), we get the remainder

(2k-9)x –(8-k)k +10

Comparing this with (x+a)

We get

K=5 and a=-5

5) A cubic polynomial is given below

 $S(x) = x^3 - 3x^2 + x + 1$

The zeroes of the polynomial are given as (p-q) ,p and (p+q). What is the value p and q

- a) 1 ,√2
- b) 1,-2
- c) 1,2
- d) None of these

Solution (a)

Division of polynomial

s(x) = r(x) s(x) + w(x)

Find the value of r(x) and w(x) in each case

a) $p(x) = x^4 + x^3 + 2x^2 + 3x + 4$

s(x) = x+2

$$s(x)=x^{2}+x+1$$

Solution

a)
$$r(x)=x^3-x^2+4x-5$$
 w(x)=14

b) $r(x)=x^2-x w(x)=x+4$