

Quadratic Formula Worksheet

For the Quadratic equation

 $ax^2 + bx + c = 0$

Where a, b and c are real numbers and a $\neq 0$

Roots of the quadratic equation is given by Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Question 1. State which all quadratic equations have real roots, no real roots

- a) $x^2 + x + 7 = 0$
- b) $3x^2 + 6x + 1 = 0$
- c) $9x^2 + x + 3 = 0$
- d) $11x^2 12x 1 = 0$
- e) $-13x^2 + 3x + 7 = 0$
- f) $2x^2 6x + 3 = 0$
- g) $x-(1/x)-3=0 x \neq 0$
- h) $-x^2 2x 2 = 0$

Solution

Nature of roots of Quadratic equation

S.no	Condition	Nature of roots
1	$b^2 - 4ac > 0$	Two distinct real roots
2	$b^2-4ac = 0$	One real root
3	$b^2-4ac < 0$	No real roots

Real roots: : (b), (d) ,(e),(f),(g)

No real roots : (a) ,(c),(h)

Question 2. Find the roots of the quadratic equation using Quadratic Formula

a) x²-3x-10=0

b) x² -11x+30=0

Solution

a)

 $x^2 - 3x - 10 = 0$

Comparing this to $ax^2 + bx + c=0$

We have a =1, b=-3 and c = -10

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

So roots are x=-2 and 5

b) $x^2 - 11x + 30 = 0$

Comparing this to $ax^2 + bx + c=0$

a=1, b=-11 and c = 30

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

So

Roots are 5 and 6

Question 3. Find the roots of the quadratic equation using Quadratic formula

- a) $x^2 + 4x 5 = 0$
- b) $2x^2 7x + 3 = 0$

Solution

a)

 $x^{2} + 4x - 5 = 0$

Comparing this to $ax^2 + bx + c=0$

a=1, b=4 and c =-5

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

So

x=1 or -5

b)

 $2x^2 - 7x + 3 = 0$

Comparing this to $ax^2 + bx + c=0$

```
a=2, b=-7 and c =3
```

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

.

x=1/2 or 3

Question 4

Find the roots using Quadratic Formula

- a) $x^2 + (7 x)^2 = 25$
- b) $y^2 + (y+2)^2 = 580$
- c) $11x^2 31x 6 = 0$
- d) 9 -y $10y^2 = 0$
- e) $14x + 4x^2 = 2x 5$
- g) $3y^2 + 4y = 2(y+4)$
- h) $2x^2 5x + 3 = 0$
- i) $\frac{x+1}{x-1} + \frac{x-2}{x+2} = 3$, $x \neq 1$, $x \neq -2$
- j) $x^2 + 5x + 1$