Thermodynamics Problem's

Question: One mole of an ideal monoatomic gas is taken round the cyclic process ABCDA as shown in figure.
A)Work done by the gas
b Heat absorbed by the gas in $A B$ and $B C$
c. Heat in process CD
d. Find the temperature at C and D
e. Maximum temperature attained by the gas during the cycle
f. Net change in the internal energy and the heat

Solution

For monoatomic gas
Cp=5R/2
$C v=3 R / 2$
a) Workdone by the gas = Area enclosed by the curve $A B C D A$

$$
=3 P_{0} V_{0}
$$

Solution continued

- Heat absorbed the gas in $A B$

$\mathrm{Q}_{\mathrm{AB}}=\mathrm{C}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}\right)$ $=(3 R / 2)\left(3 \mathrm{P}_{0} \mathrm{~V}_{0} R-\mathrm{P}_{0} \mathrm{~V}_{0} / \mathrm{R}\right)$
$=3 \mathrm{P}_{0} \mathrm{~V}$

Heat absorbed the gas in BC

$$
\begin{aligned}
& \mathrm{Q}_{B C}=\mathrm{C}_{P}\left(\mathrm{~T}_{C}-\mathrm{T}_{B}\right) \\
& =(5 R / 2)\left(6 \mathrm{P}_{0} \mathrm{~V}_{0} / R-3 \mathrm{P}_{0} \mathrm{~V}_{0} / R\right) \\
& =15 \mathrm{P}_{0} \mathrm{~V}_{0} / 2
\end{aligned}
$$

Solution continued

- Heat rejected in DA

$$
\begin{aligned}
& Q_{D A}=C_{P}\left(T_{A}-T_{D}\right) \\
& =-5 P_{0} V_{0}
\end{aligned}
$$

Now for the cycle process
$Q_{A B}+Q_{B C}+Q_{C D}+Q_{D A}=W$ So
$Q_{C D}=-5 P_{0} V_{0} / 2$

Solution continued

- from diagram and $P V=R T$
$T_{C}=6 \mathrm{P}_{0} V_{0} / R$
$\mathrm{~T}_{\mathrm{D}}=3 \mathrm{P}_{0} \mathrm{~V}_{0} / \mathrm{R}$

Solution Continued

- Max temperature will be on the slope CD

Equation of Slope CD as Coordinated system
$y=m x+c$

- Taking the values for C and D, we get
- $\quad P=-\left(2 P_{0} / V_{0}\right) V+7 P_{0}$

Now $\mathrm{PV}=\mathrm{RT}$
So
$R T=-\left(2 P_{0} / V_{0}\right) V 2+7 P_{0}$
For max
dT/dV should be zero
So RdT/dV $=-4 \mathrm{P}_{0} \mathrm{~V} / \mathrm{V}_{0}+7$
$\mathrm{V}=7 \mathrm{~V}_{0} / 4$
Tmax $=49_{P_{0}} v_{0} / 4 R$
f. $\Delta U=0$

Net heat=3P0V0

