Thermodynamics Problem's

Question: One mole of an ideal monoatomic gas is taken round the cyclic process ABCDA as shown in figure.

A)Work done by the gas

b Heat absorbed by the gas in AB and BC

c. Heat in process CD

- d. Find the temperature at C and D
- e. Maximum temperature attained by the gas during the cycle
- f. Net change in the internal energy and the heat

Solution

For monoatomic gas Cp=5R/2 Cv=3R/2

a) Workdone by the gas = Area enclosed by the curve ABCDA $= 3P_0V_0$

Solution continued

• Heat absorbed the gas in AB $Q_{AB} = C_V(T_B - T_A)$ $= (3R/2)(3P_0V_0/R - P_0V_0/R)$ $= 3P_0V_0$ Heat absorbed the gas in BC $Q_{BC} = C_P(T_C - T_B)$ $= (5R/2)(6P_0V_0/R - 3P_0V_0/R)$ $= 15P_0V_0/2$

Solution continued

• Heat rejected in DA $Q_{DA} = C_P (T_A - T_D)$ $= -5P_0V_0$

> Now for the cycle process $Q_{AB} + Q_{BC} + Q_{CD} + Q_{DA} = W$ So $Q_{CD} = -5P_0V_0/2$

Solution continued

• from diagram and PV=RT

$$T_{C} = 6P_{0}V_{0}/R$$

 $T_{D} = 3P_{0}V_{0}/R$

Solution Continued

• Max temperature will be on the slope CD

Equation of Slope CD as Coordinated system y=mx +c

- Taking the values for C and D,we get
- P=-(2P₀/V₀) V + 7P₀ Now PV=RT

So RT= $-(2P_0/V_0)V2 + 7P_0$ For max dT/dV should be zero So RdT/dV= $-4P_0 V/V_0 + 7$ V= $7V_0 / 4$ Tmax= $49P_0V_0/4R$ f. $\Delta U=0$ Net heat=3P0V0

