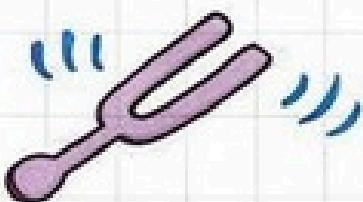
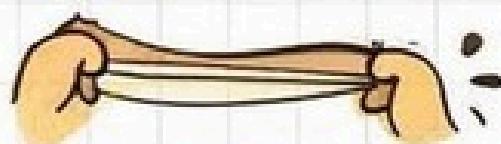
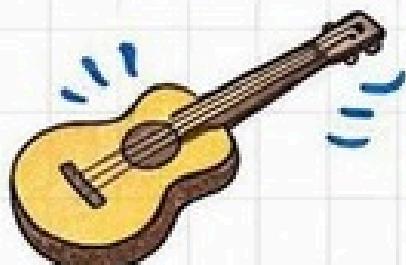


SOUND

Quick Revision Guide


1 Production of Sound

- Sound is produced by **vibration** of objects
- Sound is a form of **energy** that produces sensation of hearing
- **Vibration** = rapid to-and-fro motion of an object



Examples:

- **Vocal cords**

- **Tuning fork**

- **Stretched rubber band**

- **Musical instruments**

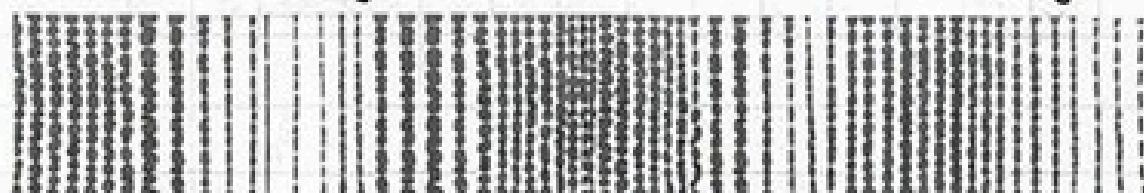
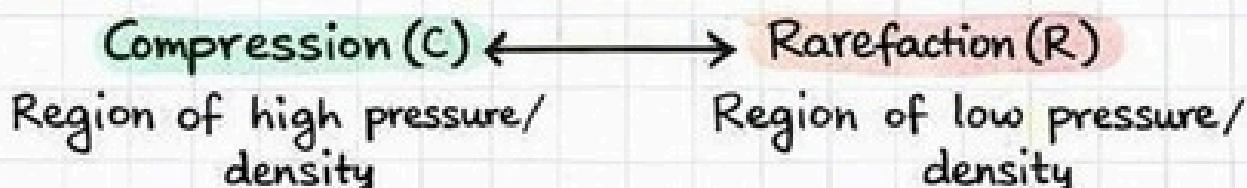
- **Vocal cords**

SOUND

Quick Revision Guide

2. PROPAGATION OF SOUND

Medium & Wave Nature



- Sound requires a medium (solid, liquid, or gas) to travel

Sound waves are mechanical waves and Longitudinal waves

- Particles oscillate parallel to direction of wave propagation
- Particles don't travel; only disturbance travels through the medium

Compressions & Rarefactions

- Sound propagates as series of compressions and rarefactions

SOUND

Quick Revision Guide

3. CHARACTERISTICS OF SOUND WAVES

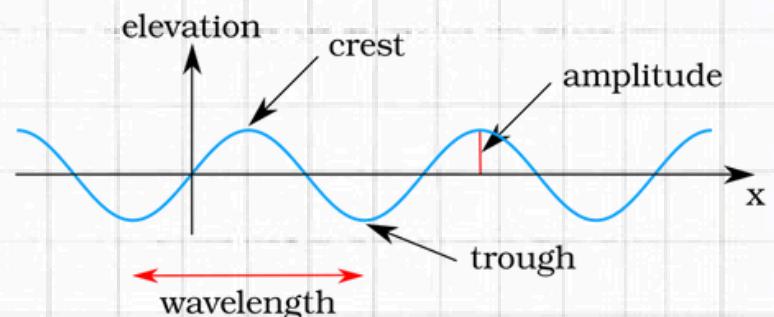
Key Parameters

- **Wavelength (λ)**

- Distance between two consecutive compressions or rarefactions: unit = m

- **Frequency (v)**

Number of oscillations per unit time


- **Time Period (T)**

Time for one complete oscillation

- **Amplitude (A)**

Maximum displacement from mean position

unit: density or pressure

Key Formulas

$$v = \frac{1}{T}$$

or

$$v = \lambda v$$

where v = speed of sound, λ = wavelength, v = frequency

SOUND

Quick Revision Guide

4. SOUND PROPERTIES & SPEED OF SOUND

Sound Properties

- **Pitch** : Determined by frequency
Higher frequency →

- **Loudness** : Determined by amplitude
Larger amplitude →

- **Quality / Timbre** : Distinguishes sounds of same pitch and loudness

- **Intensity** : Sound energy pass per second through unit area

Speed of Sound

- Speed depends on nature of medium and temperature
- Solid decreases: Solid > Liquid > Gas
- Speed increases with temperature increase

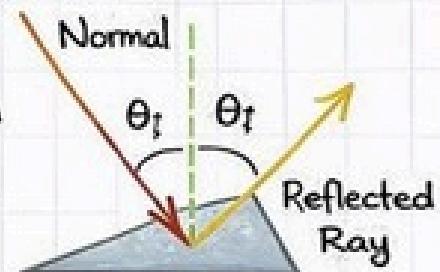
Important Values (at 25 °C)

Air : 346 m/s

Water (distilled): 1498 m/s

Steel: 5960 m/s

= 5960 m/s


SOUND

Quick Revision Guide

5. REFLECTION OF SOUND

Laws of Reflection

- Angle of incidence = Angle of reflection
- Incident ray, reflected ray, and normal lie in same plane

- **Echo:** Reflected sound heard distinctly after original sound
 - Minimum time gap for distinct echo: 0.1 s
 - Minimum distance for echo (at 344 m/s): 17.2 m

$$\text{Distance} = v \times \frac{t}{2} \rightarrow$$

Reverberation

- Persistence of sound heard distinctly after original sound
- Reduced using sound-absorbent materials (fibreboard, rough plaster, draperies)

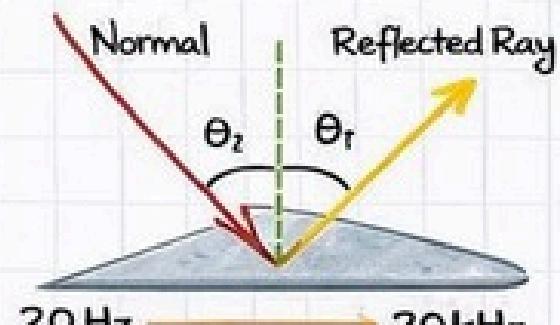
Applications of Multiple Reflection

- Megaphones, horns, trumpets (direct sound in specific direction)
- Stethoscope (multiple reflections guide sound to ears)
- Soundboards (reflect sound across auditorium)

- Megaphones, horns, trumpets

- Stethoscope

- Curved ceilings in halls

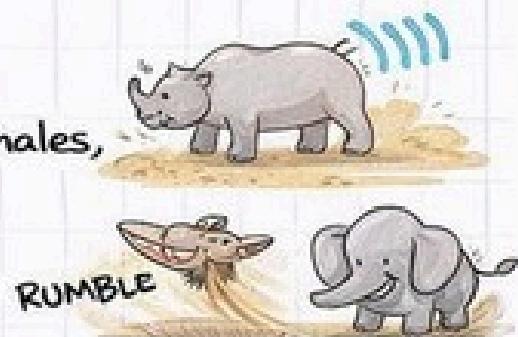

SOUND

Quick Revision Guide

6. RANGE OF HEARING

Human Audible Range

- 20 Hz to 20,000 Hz (20 kHz)
- Children and some animals: up to 25 kHz
- Sensitivity to higher frequencies decreases with age →


Beyond Audible Range

Beyond Audible Range

Infrasound < 20 Hz

- Produced by: earthquakes, rhinos, whales, elephants

Frequency = 20 Hz

Beyond Audible Range

Infrasound < 20 Hz

- Produced by: bats, dolphins, porpoises

Frequency > 20 kHz

Applications of Multiple Reflection

- Megaphones, horns, trumpets (direct sound in specific direction)
- Soundboards (reflect sound across auditorium)

SOUND

Quick Revision Guide

All the best!

7. APPLICATIONS & DISTINCTIONS

Applications of Ultrasound

Industrial Applications

- **Cleaning:** Removes dust/grease from hard-to-reach places using high frequency vibrations
- **Flaw Detection:** Detects cracks in metal blocks (ultrasound reflects from defects) →

Medical Applications

- **Echocardiography:** Images of heart
- **Ultrasonography:** Images of internal organs (liver, kidney, uterus, fetus)
- **Kidney Stone Treatment:** Breaks stones into fine grains
- **Hearing Aid:** Amplifies sound for hearing-impaired

Quick Problem-Solving Tips

- ★ For echo problems: Remember minimum 0.1 s gap and distance = $v \times \frac{t}{2}$
- ★ Use $v = \lambda\nu$ to find any one variable if two are known
- ★ For distance-time problems: time = distance / speed
- ★ Sound sensation persists in brain for 0.1 s

For echo problems: Remember minimum 0.1 s gap and distance = $(v \times \frac{t}{2})$

- Use $v = \lambda\nu$ to find any one variable if two are known