

Class 9 Sound Mind Maps

PRODUCTION OF SOUND

PROPAGATION OF SOUND

Transverse Waves (Comparison)

- Particles oscillate PERPENDICULAR to wave direction
- Example: water ripples in pond
- Light is transverse (but not mechanical)
- Sound is NOT transverse

Medium Requirement

- Sound needs material medium to travel
- Medium types: Solid, Liquid, or Gas
- Cannot travel in vacuum (e.g., no sound on moon)
- Most common medium: Air

Longitudinal Wave Characteristics

- Particles oscillate PARALLEL to wave direction
- Particles oscillate back and forth about rest position
- Particles don't move from place to place
- Disturbance carries forward, not particles
- Compare with slinky demonstration

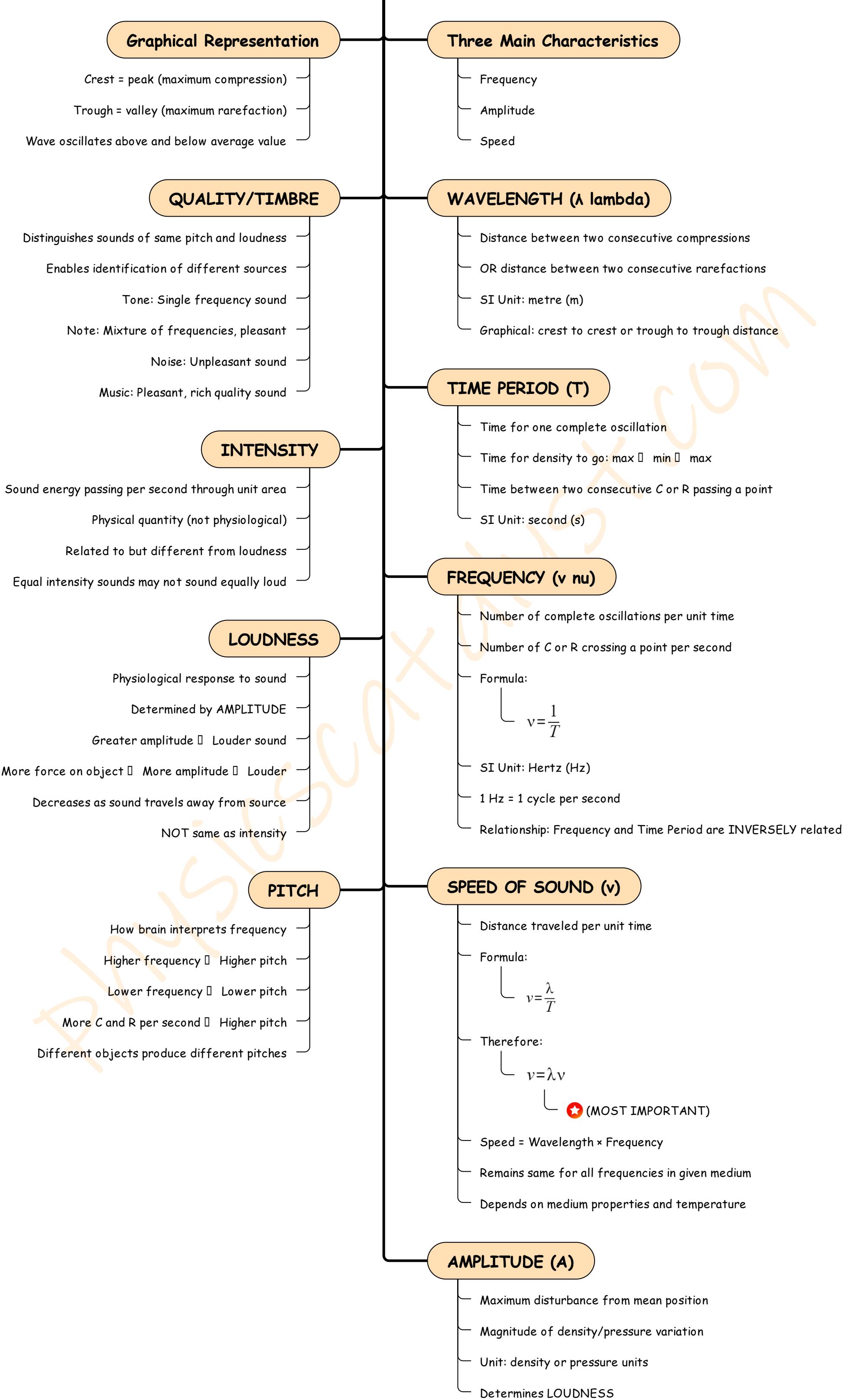
How Sound Travels

- Source vibrates \Rightarrow particles of medium vibrate
- Particles don't travel forward
- Only DISTURBANCE/ENERGY travels
- Each particle displaces adjacent particle
- Chain reaction through medium

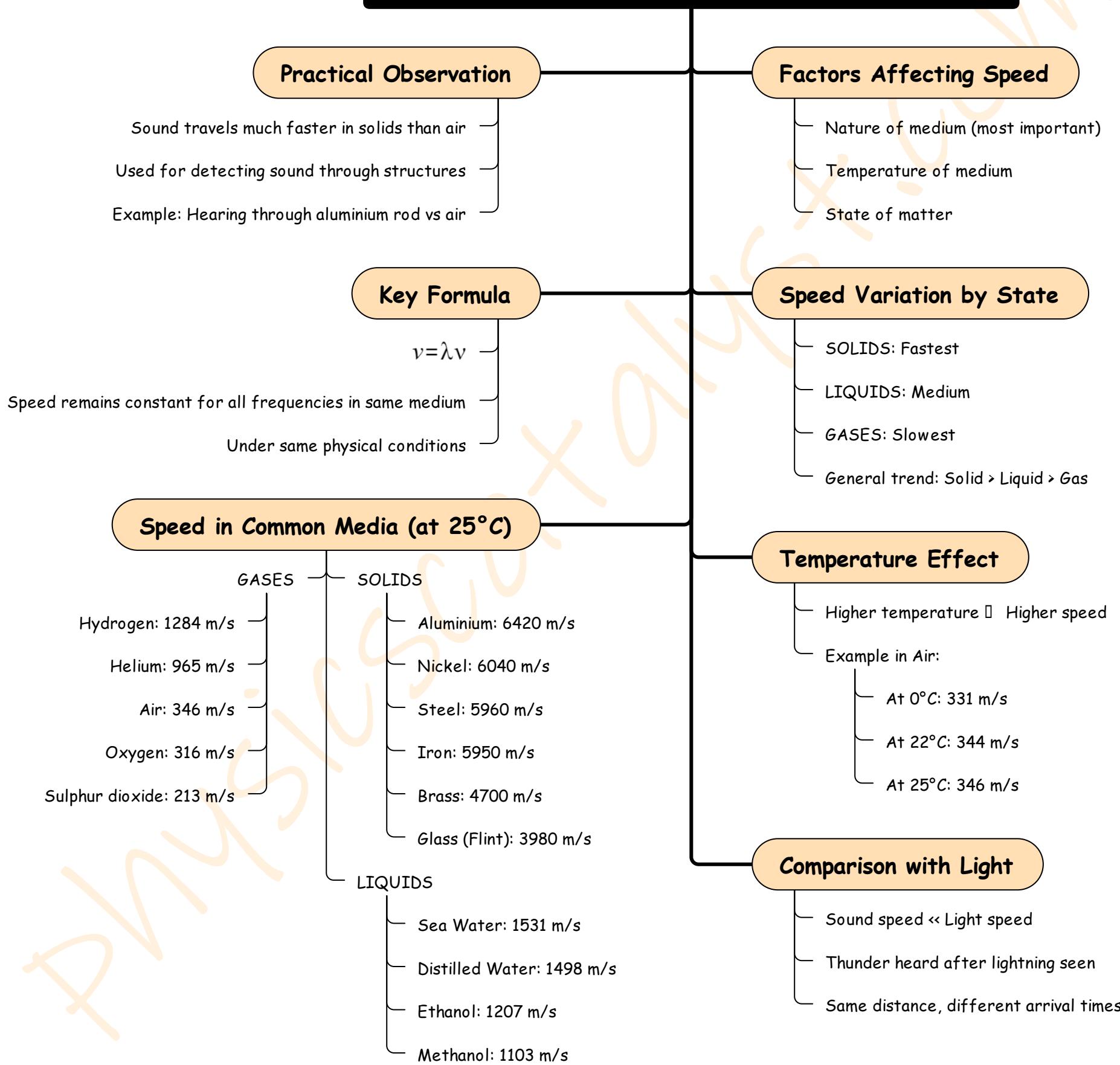
Pressure-Density Relationship

- More particles per volume \Rightarrow Higher pressure
- Fewer particles per volume \Rightarrow Lower pressure
- Sound = propagation of density/pressure variations

Wave Nature of Sound


- Sound is a WAVE
- Wave = disturbance moving through medium
- Sound waves are MECHANICAL WAVES
- Require medium for propagation

Compressions and Rarefactions


- Compression (C)
 - Region of HIGH pressure
 - Particles crowded together
 - Higher density
 - Vibrating object moves forward
- Rarefaction (R)
 - Region of LOW pressure
 - Particles spread apart
 - Lower density
 - Vibrating object moves backward

Series of C and R form sound wave

CHARACTERISTICS OF SOUND WAVES

SPEED OF SOUND IN DIFFERENT MEDIA

REFLECTION OF SOUND

REVERBERATION

- Persistence of sound due to repeated reflections
- Common in big halls and auditoriums
- Excessive reverberation is undesirable
- Reduction Methods
 - Compressed fibreboard on walls/roof
 - Rough plaster
 - Draperies/curtains
 - Sound-absorbent seat materials
 - All materials chosen for absorption properties

Basic Principle

- Sound bounces off solids and liquids
- Like rubber ball bouncing off wall
- Follows same laws as light reflection

Laws of Reflection

- Angle of incidence = Angle of reflection
- Both angles measured from normal
- Incident ray, reflected ray, normal in same plane
- Requires large obstacle (polished or rough)

Uses of Multiple Reflection

- 1. Megaphones and Horns
 - Direct sound in specific direction
 - Tube + conical opening design
 - Successive reflections guide sound forward
 - Examples: loudhailers, trumpets, shehanais
- 2. Stethoscope
 - Medical instrument for internal body sounds
 - Multiple reflections carry heart/lung sounds
 - From patient's body to doctor's ears
- 3. Curved Ceilings
 - Concert halls, conference halls, cinema halls
 - Sound reaches all corners after reflection
 - Ensures uniform sound distribution
- 4. Sound Boards
 - Curved board behind stage
 - Reflects sound across hall width
 - Even spread of sound to audience

ECHO

- Reflected sound heard distinctly
- Requires suitable reflecting surface
- Examples: tall building, mountain, cliff
- Conditions for Hearing Echo
 - Minimum time gap: 0.1 s (persistence of sound in brain)
 - Speed of sound (at 22°C): 344 m/s
 - Total distance:
$$344 \times 0.1 = 34.4 \text{ m}$$
 - Minimum distance from obstacle:
$$\frac{34.4}{2} = 17.2 \text{ m}$$
 - Distance varies with temperature
- Multiple Echoes
 - Due to successive reflections
 - Thunder rolling = multiple echoes from clouds and land
- Echo Calculation Formula
 - $$\text{Distance} = \frac{v \times t}{2}$$
 - Divide by 2 because sound travels twice the distance

Practical Applications

- Distance measurement using echo
- Architectural acoustics design
- Detecting obstacles at distance

RANGE OF HEARING

ULTRASONIC SOUND (Ultrasound)

- Frequencies ABOVE 20 kHz (20,000 Hz)
- Above human audible range
- Cannot be heard by humans
- Animals Using Ultrasound
 - Dolphins
 - Bats (for echolocation)
 - Porpoises
- Certain moth families (sensitive hearing)
- Rats (for playing/communication)
- Properties
 - High frequency waves
 - Can travel in well-defined paths
 - Can travel even with obstacles present
- Used extensively in industry and medicine

AUDIBLE RANGE (Humans)

- Frequency range: 20 Hz to 20,000 Hz (20 kHz)
- Average human ear capability
- Children under 5: can hear up to 25 kHz
- Dogs: can hear up to 25 kHz
- Sensitivity decreases with age
- Older people: less sensitive to higher frequencies

Frequency Comparison

- Below 20 Hz: INFRASOUND
- 20 Hz - 20 kHz: AUDIBLE SOUND
- Above 20 kHz: ULTRASOUND

INFRASONIC SOUND (Infrasound)

- For people with hearing loss
- Electronic, battery-operated device
- Working Principle
 - Microphone receives sound waves
 - Converts to electrical signals
 - Amplifier increases signal strength
 - Speaker converts back to amplified sound
 - Delivers to ear for clear hearing

- Frequencies BELOW 20 Hz
- Below human audible range
- Cannot be heard by humans normally
- Examples
 - Pendulum vibrations
 - Rhinoceroses communication: as low as 5 Hz
 - Whales produce infrasound
 - Elephants produce infrasound
- Earthquake Connection
 - Earthquakes produce infrasound before main shock
 - Animals can detect these
 - Animals get disturbed before earthquakes
 - Acts as early warning system for animals

APPLICATIONS OF ULTRASOUND

Advantages of Ultrasound

- Non-invasive
- Safe for human tissue
- Precise and accurate
- Real-time imaging possible
- No radiation exposure (unlike X-rays)

Properties Making Ultrasound Useful

- High frequency
- Travels in well-defined paths
- Works even with obstacles
- Can penetrate materials
- Reflects from boundaries

INDUSTRIAL APPLICATIONS

Examples: spiral tubes, odd-shaped parts, electronic components

① Cleaning

- Cleans hard-to-reach places

Method:

- Place objects in cleaning solution
- Send ultrasonic waves into solution
- High frequency detaches dust, grease, dirt
- Particles drop out
- Thorough cleaning achieved

② Defect Detection in Metals

Used in: buildings, bridges, machines, scientific equipment

Principle:

- Cracks/holes reduce structural strength
- Invisible from outside
- Ultrasound passes through metal
- Detectors receive transmitted waves
- Defects cause reflection back
- Indicates flaw location
- Why not ordinary sound?
- Longer wavelength bends around corners
- Cannot pinpoint defects accurately
- Ultrasound's short wavelength is crucial

MEDICAL APPLICATIONS

① Echocardiography

- Images of heart structure
- Ultrasound reflects from heart parts
- Forms detailed heart image
- Non-invasive technique

② Ultrasound Scanner/Ultrasonography

- Gets images of internal organs
- Organs imaged: liver, gall bladder, uterus, kidney, etc.
- Detects abnormalities:
 - Stones in gall bladder
 - Kidney stones
 - Tumors in various organs

Working:

- Waves travel through body tissues
- Reflect from regions of density change
- Converted to electrical signals
- Generate organ images
- Displayed on monitor or printed

③ Prenatal Examination

- Examination of fetus during pregnancy
- Detects:
 - Congenital defects
 - Growth abnormalities
- Fetal development stages

Safe, non-invasive method

④ Breaking Kidney Stones

- Non-surgical method
- Ultrasound breaks stones into fine grains
- Grains flush out with urine
- Avoids invasive surgery