Class 10 Math's Formula

CBSE Class 10 Math's Summary

This pdf list all the Class 10 CBSE math's formula in a concise manner to help the students in revision and examination as per NCERT syllabus

Real Numbers

S.no	Type of Numbers	Description
1	Natural Numbers	$N = \{1,2,3,4,5\}$ It is the counting numbers
2	Whole number	$W = \{0,1,2,3,4,5,\dots\}$ It is the counting numbers + zero
3	Integers	Z={7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}
4	Positive integers	Z ₊ = {1,2,3,4,5}
5	Negative integers	Z ₋ ={7,-6,-5,-4,-3,-2,-1}
6	Rational Number	A number is called rational if it can be expressed in the form p/q where p and q are integers ($q >$ 0).
		Example : 1/2 , 4/3 ,5/7 ,1 etc.
7	Irrational Number	A number is called rational if it cannot be expressed in the form p/q where p and q are integers ($q > 0$).
		Example : $\sqrt{3}, \sqrt{2}, \sqrt{5}, \pi$ etc
8.	Real Numbers:	All rational and all irrational number makes the collection of real number. It is denoted by the letter R
S.no	Terms	Descriptions
1	Euclid's Division Lemma	For a and b any two positive integer, we can always find unique integer q and r such that

		a=bg+r , 0≤r≤b
		If r =0, then b is divisor of a.
2	HCF (Highest	HCF of two positive integers can be find using the
	common factor)	Euclid's Division Lemma algorithm
		We know that for any two integers a, b. we can write following expression
		$a=bq+r$, $0 \le r \le b$
		If r=0 ,then
		HCF(a, b) =b
		If r≠0 , then
		HCF $(a, b) = HCF (b, r)$
		Again expressing the integer b,r in Euclid's Division Lemma, we get
		b=pr + r ₁
		HCF (b,r)=HCF (r,r ₁)
		Similarly successive Euclid 's division can be written
		point is called the HCF of the a and b
2	$\Box CE(ab) = 1$	Then a and h are continued
5	ΠΟΓ (a,b) – I	men a anu b are co primes.
4	Fundamental	Composite number = Product of primes
	Arithmetic	

5	HCF and LCM by prime factorization method	HCF = Product of the smallest power of each common factor in the numbersLCM = Product of the greatest power of each prime factor involved in the number
6	Important Formula	HCF (a,b) X LCM (a,b) =a X b
7	Important concept for rational Number	Terminating decimal expression can be written in the form
		p/2 ⁿ 5 ^m

Polynomial expressions

A polynomial expression S(x) in one variable x is an algebraic expression in x term as

$$S(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_n + a_0$$

Where $a_n, a_{n-1}, ..., a, a_0$ are constant and real numbers and a_n is not equal to zero

Some Important point to Note

S.no	Points	
1	a _n ,a _{n-1} ,a _{n-2} ,a ₁ ,a ₀	are called the coefficients for $x^n, x^{n-1}, \dots, x^1, x^0$

2	n is called the degree of the polynomial
3	when a_n , a_{n-1} , a_{n-2} ,, a_1 , a_0 all are zero, it is called zero polynomial
4	A constant polynomial is the polynomial with zero degree, it is a constant value polynomial
5	A polynomial of one item is called monomial, two items binomial and three items as trinomial

6 A polynomial of one degree is called linear polynomial, two degree as quadratic polynomial and degree three as cubic polynomial

Important concepts on Polynomial

Concept	Description
Zero's or roots of the polynomial	It is a solution to the polynomial equation $S(x)=0$ i.e. a number "a" is said to be a zero of a polynomial if $S(a) = 0$. If we draw the graph of $S(x) = 0$, the values where the curve cuts the X-axis are called Zeroes of the polynomial
Remainder Theorem's	If $p(x)$ is an polynomial of degree greater than or equal to 1 and $p(x)$ is divided by the expression (x-a),then the remainder will be $p(a)$
Factor's Theorem's	If x-a is a factor of polynomial $p(x)$ then $p(a)=0$ or if $p(a) = 0,x-a$ is the factor the polynomial $p(x)$

Geometric Meaning of the Zeroes of the polynomial

Let's us assume

y = p(x) where p(x) is the polynomial of any form.

Now we can plot the equation y=p(x) on the Cartesian plane by taking various values of x and y obtained by putting the values. The plot or graph obtained can be of any shapes

The zeroes of the polynomial are the points where the graph meet x axis in the Cartesian plane. If the graph does not meet x axis ,then the polynomial does not have any zero's.

Let us take some useful polynomial and shapes obtained on the Cartesian plane

S.no	y=p(x)	Graph obtained	Name of the graph	Name of the equation
1	y=ax+b where a and b can be any values (a≠0) Example y=2x+3		Straight line. It intersect the x- axis at (-b/a,0) Example (-3/2,0)	Linear polynomial
2	y=ax ² +bx+c where b ² -4ac > 0 and a \neq 0 and a> 0 Example y=x ² -7x+12		Parabola It intersect the x- axis at two points Example (3,0) and (4,0)	Quadratic polynomial
	$\boldsymbol{\mathcal{A}}$			

7	y=ax ³ +bx ² +cx+d where a≠0	It can be of any shape	It will cut the x-axis at the most 3 times	Cubic Polynomial
8	$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_0$ + a_0 Where $a_n \neq 0$	It can be of any shape	It will cut the x-axis at the most n times	Polynomial of n degree
		$\uparrow \lor \lor$		
		XO		

Relation between coefficient and zeroes of the Polynomial:

S.no	Type of Polynomial	General form	Zero's	Relationship between Zero's and coefficients
1	Linear polynomial	ax+b , a≠0	1	$k = \frac{-constant \ term}{Coefficent \ of \ x}$
2	Quadratic	ax²+bx+c, a≠0	2	$k_1 + k_2 = -\frac{Coefficent of x}{Coefficent of x^2}$ $k_1k_2 = \frac{Contant term}{Coefficent of x^2}$
3	Cubic	ax³+bx²+cx+d, a≠0	3	$k_1 + k_2 + k_3$ = $-\frac{Coefficent of x^2}{Coefficent of x^3}$

 $\begin{aligned} k_1 k_2 k_3 &= -\frac{Contant \ term}{Coefficent \ of \ x^{32}} \\ k_1 k_2 + k_2 k_3 + k_1 k_3 \\ &= \frac{Coefficent \ of \ x}{Coefficent \ of \ x^2} \end{aligned}$

Formation of polynomial when the zeroes are given

Type of polynomial	Zero's	Polynomial Formed
Linear	k=a	(x-a)
Quadratic	k₁=a and k₂=b	(x-a)(x-b) Or x ² -(a+b)x +ab
		Or x ² -(Sum of the zero's)x +product of the zero's
Cubic	k₁=a ,k₂=b and k₃=c	(x-a)(x-b)(x-c)

Division algorithm for Polynomial

Let's p(x) and q(x) are any two polynomial with $q(x) \neq 0$, then we can find polynomial s(x) and r(x) such that

P(x)=s(x) q(x) + r(x)

Where r(x) can be zero or degree of r(x) < degree of g(x)

Dividend =Quotient X Divisor + Remainder

COORDINATE GEOMETRY

6	Deinte
5.110	Politics
1	We require two perpendicular axes to locate a point in the plane. One of them is horizontal and other is Vertical
2	The plane is called Cartesian plane and axis are called the coordinates axis
3	The horizontal axis is called x-axis and Vertical axis is called Y-axis
4	The point of intersection of axis is called origin.
5	The distance of a point from y axis is called x -coordinate or abscissa and the distance of the point from x -axis is called y - coordinate or Ordinate
6	The distance of a point from y axis is called x -coordinate or abscissa and the distance of the point from x -axis is called y - coordinate or Ordinate
7	The Origin has zero distance from both x-axis and y-axis so that its abscissa and ordinate both are zero. So the coordinate of the origin is (0, 0)
8	A point on the x –axis has zero distance from x-axis so coordinate of any point on the x-axis will be $(x, 0)$
9	A point on the y –axis has zero distance from y-axis so coordinate of any point on the y-axis will be $(0, y)$
10	The axes divide the Cartesian plane in to four parts. These Four parts are called the quadrants

The coordinates of the points in the four quadrants will have sign according to the below table

Quadrant	x-coordinate	y-coordinate
Ist Quadrant	+	+
IInd quadrant	-	+
IIIrd quadrant	-	-
IVth quadrant	+	-

S.no	Terms	Descriptions
1	Distance formula Distance between the points AB is given by	
		$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		Distance of Point A from Origin
		$D = \sqrt{x^2 + y^2}$
2	Section Formula	A point $P(x,y)$ which divide the line segment AB in the ratio m_1 and m_2 is given by

Area of Triangle

3

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$
$$y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$$

The midpoint P is given by

 $\left(\frac{x_1+x_2}{2}\right), \left(\frac{y_1+y_2}{2}\right)$

Area of triangle ABC of coordinates $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$

$$A = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

For point A,B and C to be collinear, The value of A should be zero

LINEAR EQUATIONS IN TWO VARIABLES

An equation of the form ax + by + c = 0, where a, b and c are real numbers, such that a and b are not both zero, is called a linear equation in two variables Important points to Note

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

 $= \Delta(\mathbf{x}_1 \ \mathbf{v}_1)$

S.no	Points
1	A linear equation in two variable has infinite solutions
2	The graph of every linear equation in two variable is a straight line
3	x = 0 is the equation of the y-axis and $y = 0$ is the equation of the x-axis
4	The graph $x=a$ is a line parallel to y -axis.
5	The graph y=b is a line parallel to x -axis
6	An equation of the type $y = mx$ represents a line passing through the origin.
7	Every point on the graph of a linear equation in two variables is a solution of the linear
	equation. Moreover, every solution of the linear equation is a point on the graph

S.no	Type of equation	Mathematical representation	Solutions
1	Linear equation in one Variable	ax+b=0 ,a≠0 a and b are real number	One solution
2	Linear equation in two Variable	ax+by+c=0 , a≠0 and b≠0 a, b and c are real number	Infinite solution possible
3	Linear equation in three Variable	ax+by+cz+d=0 , a≠0 ,b≠0 and c≠0	Infinite solution possible

a, b, c, d are real number

Simultaneous pair of Linear equation:

A pair of Linear equation in two variables

 $a_1x+b_1y+c_1=0$

 $a_2x + b_2y + c_2 = 0$

Graphically it is represented by two straight lines on Cartesian plane.

Simultaneous pair of Linear equation	Condition	Graphical representation	Algebraic interpretation
a ₁ x+b ₁ y+c ₁ =0 a ₂ x +b ₂ y+c ₂ =0 Example x-4y+14=0 3x+2y-14=0	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Intersecting lines. The intersecting point coordinate is the only solution	One unique solution only.
a₁x+b₁y+c₁=0 a₂x +b₂y+c₂=0	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Coincident lines. The any coordinate on the line is the solution.	Infinite solution.

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

Example			
2x+4y=16			
3x+6y=24			
a ₁ x+b ₁ y+c ₁ =0	$\frac{a_1}{a} = \frac{b_1}{b} \neq \frac{c_1}{c}$	Parallel Lines	No solution
a ₂ x +b ₂ y+c ₂ =0	$u_2 v_2 v_2$	X	
Example			
2x+4y=6			
4x+8y=18			
	X	0	

The graphical solution can be obtained by drawing the lines on the Cartesian plane.

Algebraic Solution of system of Linear equation

S.no	Type of method	Working of method
1	Method of elimination by substitution	1) Suppose the equation are
		$a_1x+b_1y+c_1=0$
		$a_2x + b_2y + c_2 = 0$
		 Find the value of variable of either x or y in other variable term in first equation
		3) Substitute the value of that variable in second equation

		 Now this is a linear equation in one variable. Find the value of the variable
		5) Substitute this value in first equation and get the second variable
2	Method of elimination by	1) Suppose the equation are
	equaling the coefficients	$a_1x+b_1y+c_1=0$
		$a_2x + b_2y + c_2 = 0$
		2) Find the LCM of a_1 and a_2 .Let it k.
		3) Multiple the first equation by the value k/a_1
		4) Multiple the first equation by the value k/a_2
		4) Subtract the equation obtained. This way one variable will be eliminated and we can solve to get the value of variable y
		5) Substitute this value in first equation and get the second variable
3	Cross Multiplication method	1) Suppose the equation are
		$a_1x+b_1y+c_1=0$
		$a_2x + b_2y + c_2 = 0$
		2) This can be written as
		$\frac{x}{b_1 \ c_1} = \frac{-y}{a_1 \ c_1} = \frac{1}{a_1 \ b_1}$ $\frac{b_2 \ c_2}{a_2 \ c_2} = \frac{1}{a_2 \ b_2}$
		3) This can be written as

- 4) Value of x and y can be find using the
- x => first and last expression
- y=> second and last expression

Quadratic Equations

S.no	Terms	Descriptions
1	<u>Quadratic Polynomial</u>	$P(x) = ax^2 + bx + c$ where $a \neq 0$
2	<u>Quadratic equation</u>	ax ² +bx+c =0 where a≠0
3	<u>Solution or root of the</u> <u>Quadratic equation</u>	A real number α is called the root or solution of the quadratic equation if $a\alpha^2 + b\alpha + c = 0$
4	zeroes of the polynomial p(x).	The root of the quadratic equation are called zeroes
5	Maximum roots of quadratic equations	We know from chapter two that a polynomial of degree can have max two zeroes. So a quadratic equation can have maximum two roots

6	Condition for real	A quadratic equation	has real roots if b^2 - 4ac > 0
	roots		

How to Solve Quadratic equation

S.no	Method	Working
1	factorization	This method we factorize the equation by splitting the middle term b
		In ax ² +bx+c=0
		Example
		6x ² -x-2=0
		1) First we need to multiple the coefficient a and c.In this case =6X-2=-12
		2) Splitting the middle term so that multiplication is 12 and difference is the coefficient b
		6x ² +3x-4x-2=0
		3x(2x+1) -2(2x+1)=0
		(3x-2) (2x+1)=0
		3) Roots of the equation can be find equating the factors to zero
		3x-2=0 => x=3/2

		$2x+1=0 \Rightarrow x=-1/2$
2	Square method	In this method we create square on LHS and RHS and then find the value.
		ax ² +bx+c=0
		1) x ² +(b/a) x+(c/a)=0
		2) (x+b/2a) ² –(b/2a) ² +(c/a)=0
		3) (x+b/2a) ² =(b ² -4ac)/4a ²
		$4) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
		Example
		x ² +4x-5=0
		1) (x+2) ² -4-5=0
		2) (x+2) ² =9
		3) Roots of the equation can be find using square root on both the sides
		x+2 =-3 => x=-5
		x+2=3=> x=1
3	Quadratic	For quadratic equation
	method	ax ² +bx+c=0,
		roots are given by
		$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

For b^2 -4ac > 0, Quadratic equation has two real roots of different value

For b^2 -4ac =0, quadratic equation has one real root

For b^2 -4ac < 0, no real roots for quadratic equation

Nature of roots of Quadratic equation

S.no	Condition	Nature of roots		
1	b ² -4ac > 0	Two distinct real roots		
2	b ² -4ac =0	One real root		
3	b ² -4ac < 0	No real roots		
Triangles				

S.no	Terms	Descriptions
1	Congruence	Two Geometric figure are said to be congruence if they are exactly same size and shape Symbol used is ≅ Two angles are congruent if they are equal Two circle are congruent if they have equal radii Two squares are congruent if the sides are equal

2	Triangle Congruence	 Two triangles are congruent if three sides and three angles of one triangle is congruent to the corresponding sides and angles of the other A D A D B C E F Corresponding sides are equal AB=DE, BC=EF, AC=DF Corresponding angles are equal ∠A = ∠D, ∠B = ∠E, ∠C = ∠F We write this as ABC ≅ DEF The above six equalities are between the corresponding parts of the two congruent triangles. In short form this is called C.P.C.T We should keep the letters in correct order on both sides
3	Inequalities in Triangles	 In a triangle angle opposite to longer side is larger In a triangle side opposite to larger angle is larger
		3) The sum of any two sides of the triangle is greater than the third side

In triangle ABC

AB + BC > AC

Different Criterion for Congruence of the triangles

N	N Critorion Description			
	Citterion	Description	expression	
1	Side angle Side (SAS) congruence	 Two triangles are congruent if the two sides and included angles of one triangle is equal to the two sides and included angle It is an axiom as it cannot be proved so it is an accepted truth 		
		 ASS and SSA type two triangles may not be congruent always 	If following condition	

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

			AB=DE, BC=EF
			$\angle B = \angle E$
			Then
			$ABC \cong DEF$
2	Angle side angle (ASA) congruence	 Two triangles are congruent if the two angles and included side of one triangle is equal to the corresponding angles and side It is a theorem and can be proved 	B B C C C C C
			If following condition
			BC=EF
			$\angle B = \angle E, \angle C = \angle F$
			Then
			$ABC \cong DEF$
3	Angle angle side(AAS) congruence	 Two triangles are congruent if the any two pair of angles and any side of one triangle is equal to the corresponding angles and side It is a theorem and can be proved 	B C E

5 Right angle – hypotenuseside(RHS) • Two right triangles are congruent if the hypotenuse and a side of the one triangle are equal to

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

congruence	corresponding hypotenuse and side of the another	В	c ^E	F
		If follo conditi	owing on	
		AC=DF	,BC=EF	
		Then		
		ABO	$C\cong DEF$	

Some Important points on Triangles

Terms	Description
Orthocenter	Point of intersection of the three altitude of the triangle
Equilateral	triangle whose all sides are equal and all angles are equal to 60°
Median	A line Segment joining the corner of the triangle to the midpoint of the opposite side of the triangle
Altitude	A line Segment from the corner of the triangle and perpendicular to the opposite side of the triangle
Isosceles	A triangle whose two sides are equal
Centroid	Point of intersection of the three median of the triangle is called the centroid of the triangle
In center	All the angle bisector of the triangle passes through same point
Circumcenter	The perpendicular bisector of the sides of the triangles passes through same point

Right Triangle Obtuse Triangle

Acute Triangle

Triangle having no equal angles and no equal sides Right triangle has one angle equal to 90⁰ One angle is obtuse angle while other two are acute angles All the angles are acute

Similarity of Triangles

S.no	Points
1	Two figures having the same shape but not necessarily the same size are called similar figures.
2	All the congruent figures are similar but the converse is not true.
3	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio
4	If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

Different Criterion for Similarity of the triangles

Ν	Criterion	Description	Expression
1	Angle Angle angle(AAA)	 Two triangles are similar if corresponding angle are equal 	If following condition
	Similarity		$\angle A = \angle D$
			$\angle B = \angle E$
			$\angle C = \angle F$
			Then
			$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

			Then
			men
			ABC~ DEF
2	Angle angle • (AA) similarity	Two triangles are similar if the two corresponding angles are equal as	If following condition
		by angle property third angle will be also equal	$\angle A = \angle D$
			$\angle B = \angle E$
			Then
			$\angle C = \angle F$
			Then
			$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$
			Then
			ABC~ DEF
3	Side side side(SSS) Similarity	Two triangles are similar if the sides of one triangle is proportional to the sides of other triangle	If following condition $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$
			Then
			$\angle A = \angle D$
			$\angle B = \angle E$
			$\angle C = \angle F$
			Then

4 Side-Angle-• Two triangles are similar if the one If following Side (SAS) angle of a triangle is equal to one angle of other triangles and sides similarity including that angle is proportional

cond	IITIO	ו
	AB	AC
	\overline{DE}	\overline{DF}
And	/ A =	/ D

Then

 $ABC \cong DEF$

Area of Similar triangles

If the two triangle ABC and DEF are similar

 $ABC \cong DEF$

Then

 $\frac{Area of Triangle ABC}{Area of triangle DEF} = (\frac{AB}{DE})^2 = (\frac{BC}{EF})^2 = (\frac{AC}{DF})^2$

Pythagoras eorem

S.no	Points
1	If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and also to each other.

2 In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides (Pythagoras Theorem).

 $(hyp)^2 = (base)^2 + (perp)^2$

3 If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle

Arithmetic Progression

S.no	Terms	Descriptions
1	Arithmetic Progression	An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant Examples 1) 1,5,9,13,17 2) 1,2,3,4,5,
2	common difference of the AP	 the difference between any successive members is a constant and it is called the common difference of AP 1) If a₁, a₂,a₃,a₄,a₅ are the terms in AP then D=a₂ -a₁ =a₃ - a₂ =a₄ - a₃=a₅ -a₄ 2) We can represent the general form of AP in the form

		a,a+d,a+2d,a+3d,a+4d
		Where a is first term and d is the common difference
3	nth term of Arithmetic Progression	a n th term = a + (n - 1)d
4	Sum of nth item in Arithmetic Progression	$S_n = (n/2)[a + (n-1)d]$ Or
		$S_n = (n/2)[t_1 + t_n]$
Tria	onometry	
	S	
S.no	Terms	Descriptions
1	What is Trigonometry	Trigonometry from Greek trigõnon, "triangle" and metron, "measure") is a branch of mathematics that studies relationships involving lengths and angles of triangles. The field emerged during the 3rd century BC from applications of geometry to astronomical studies.

Trigonometry is most simply associated with

		planar right angle triangles (each of which is a two-dimensional triangle with one angle equal to 90 degrees). The applicability to non-right-angle triangles exists, but, since any non-right-angle triangle (on a flat plane) can be bisected to create two right-angle triangles, most problems can be reduced to calculations on right-angle triangles. Thus the majority of applications relate to right-angle triangles
2	Trigonometric Patio/s	In a right angle triangle ABC where B=90°
		Perpendicular B Base We can define following term for angle A Base : Side adjacent to angle Perpendicular: Side Opposite of angle Hypotenuse : Side opposite to right angle We can define the trigonometric ratios for angle A as sin A = Perpendicular/Hypotenuse = BC/AC cosec A = Hypotenuse/Perpendicular =AC/BC cos A = Base/Hypotenuse = AB/AC sec A = Hypotenuse/Base = AC/AB tan A = Perpendicular/Base = BC/AB cot A = Base/Perpendicular = AB/BC Notice that each ratio in the right-hand column is the inverse, or the reciprocal, of the ratio in the left-hand column.

3	Reciprocal of functions	The reciprocal of sin A is cosec A ; and vice-versa.		
		The reciprocal of cos A is sec A		
		And the reciprocal of tan A is cot A		
		These are valid for acute angles.		
		We can define $\tan A = \sin A/\cos A$		
		And Cot A =cos A/ Sin A		
4	Value of of sin and cos	Is always less 1		
5	Trigonometric ration from another angle	We can define the trigonometric ratios for angle C as Base $G = Hypotenuse = AB/AC$ cosec C= Hypotenuse = AB/AC cosec C= Hypotenuse = AB/AC		
		tan A= Perpendicular/Base =AB/BC cot A= Base/Perpendicular=BC/AB		
6	Trigonometric ratios of complimentary	Sin (90-A) = cos(A) $Cos(90-A) = sin A$		

	angles	Tan(90-A) =cot A
		Sec(90-A)= cosec A
		Cosec (90-A) =sec A
		Cot(90- A) =tan A
7	Trigonometric	$\sin^2 A + \cos^2 A = 0$
	luentities	$1 + \tan^2 A = \sec^2 A$
		$1 + \cot^2 A = \csc^2 A$

Trigonometric Ratios of Common angles

We can find the values of trigonometric ratio's various angle

Angles(A)	SinA	Cos A	TanA	Cosec A	Sec A	Cot A
00	0	1	0	Not defined	1	Not defined
300	1/2	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$	√3
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	√2	√2	1
60 ⁵	$\frac{\sqrt{3}}{2}$	1/2	√3	$\frac{2}{\sqrt{3}}$	2	$\frac{1}{\sqrt{3}}$
900	1	0	Not defined	1	Not defined	0

Area of Circles

S.no	Points
1	A circle is a collection of all the points in a plane, which are equidistant from a fixed point in the plane
2	Equal chords of a circle (or of congruent circles) subtend equal angles at the center.
3	If the angles subtended by two chords of a circle (or of congruent circles) at the center (corresponding center) are equal, the chords are equal.
4	The perpendicular from the center of a circle to a chord bisects the chord.
5	The line drawn through the center of a circle to bisect a chord is perpendicular to the chord.
6	There is one and only one circle passing through three non-collinear points
7	Equal chords of a circle (or of congruent circles) are equidistant from the center (or corresponding centers).
8	Chords equidistant from the center (or corresponding centers) of a circle (or of congruent circles) are equal
9	If two arcs of a circle are congruent, then their corresponding chords are equal and conversely, if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.
10	Congruent arcs of a circle subtend equal angles at the center.
11	The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle
12	Angles in the same segment of a circle are equal

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

A

- **13** Angle in a semicircle is a right angle.
- **14** If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
- **15** The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.
- **16** If the sum of a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.

A.A.

		A A
S.no	Terms	Descriptions
1	Circumference of a circle	2 π <i>r</i> .
2	Area of circle	πr^2
3	Length of the arc of the sector of angle	Length of the arc of the sector of angle θ $\frac{\theta}{360} 2\pi r$
4	Area of the sector of angle	Area of the sector of angle θ $\frac{\theta}{360}\pi r^2$
5	Area of segment of a circle	Area of the corresponding sector – Area of the corresponding triangle
4		

Surface Area and Volume

S.no Term

Description

1	Mensuration	It is branch of mathematics which is concerned about the measurement of length ,area and Volume of plane and Solid figure
2	Perimeter	a)The perimeter of plane figure is defined as the length of the boundary b)It units is same as that of length i.e. m ,cm,km
3	Area	 a)The area of the plane figure is the surface enclosed by its boundary b) It unit is square of length unit. i.e. m², km²
4	Volume	Volume is the measure of the amount of space inside of a solid figure, like a cube, ball, cylinder or pyramid. Its units are always "cubic", that is, the number of little element cubes that fit inside the figure.

Volume Unit conversion

4

1 cm ³	1mL	1000 mm ³
1 Litre	1000ml	1000 cm ³
1 m ³	10 ⁶ cm ³	1000 L
1 dm ³	1000 cm ³	1 L

Surface Area and Volume of Cube and Cuboid

Cube	Cuboid
Туре	Measurement
Surface Area of Cuboid of Length L, Breadth B and Height H	2(LB + BH + LH).
Lateral surface area of the cuboids	2(L + B) H
Diagonal of the cuboids	$\sqrt{L^2 + B^2 + H^2}$
Volume of a cuboids	LBH
Length of all 12 edges of the cuboids	4 (L+B+H).
Surface Area of Cube of side L	6L ²
Lateral surface area of the cube	4L ²
Diagonal of the cube	$L\sqrt{3}$
Volume of a cube	L ³

Surface Area and Volume of Right circular cylinder

Radius

The radius (r) of the circular base is called the radius of the cylinder

Height The length of the axis of the cylinder is called the height (h) of the

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

	cylinder
Lateral Surface	The curved surface joining the two base of a right circular cylinder is called Lateral Surface.

Туре	Measurement
Curved or lateral Surface Area of cylinder	2πrh
Total surface area of cylinder	2пr (h+r)
Volume of Cylinder	п r²h

Surface Area and Volume of Right circular cone

Radius	The radius (r) of the circular base is called the radius of the
	cone
Height	The length of the line segment joining the vertex to the center of
	base is called the height (h) of the cone.
Slant	The length of the segment joining the vertex to any point on the
Height	circular edge of the base is called the slant height (L) of the cone.
Lateral	The curved surface joining the base and uppermost point of a right
surface	circular cone is called Lateral Surface
Area	

Туре		Measurement
Curved or lat	eral Surface Area of	πrL
Total surface	area of cone	пr (L+r)
Volume of Co	one	$\frac{1}{3}\pi r^2h$
Surface Area	and Volume of sphere and Sphere Hemisphere	hd hemisphere
Sphere	A sphere can also be con rotating a circle About it	is diameter
Hemisphere	A plane through the centre equal parts, each of which	of the sphere divides the sphere into two is called a hemisphere
radius	The radius of the circle by	which it is formed
Spherical Shell	The difference of two solid shell	concentric spheres is called a spherical
Lateral Surface Area for	Total surface area of the sp	ohere

Sphere

LateralIt is the curved surface area leaving the circular baseSurfacearea ofHemisphere

Туре	Measurement
Surface area of Sphere	4nr ²
Volume of Sphere	$\frac{4}{3}\pi r^3$
Curved Surface area of hemisphere	2nr ²
Total Surface area of hemisphere	3⊓r ²
Volume of hemisphere	$\frac{2}{3}\pi r^3$
Volume of the spherical shell whose outer and inner radii and 'R' and 'r' respectively	$\frac{4}{3}\pi(R^3-r^3)$

How the Surface area and Volume are determined

Area of Circle

The circumference of a circle is 2πr. This is the definition of π (pi). Divide the circle into many triangular segments. The area of the triangles is 1/2 times the sum of their bases, 2πr (the circumference), times their

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

height, r.

h = vertical height of the frustum

l = slant height of the frustum

 r_1 and r_2 are radii of the two bases (ends) of the frustum.

Туре	Measurement
Volume of a frustum of a cone	$\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$
Slant height of frustum of a cone	$\sqrt{h^2 + (r_1 - r_2)^2}$
Curved surface area of a frustum of a cone	$\pi l(r_1 + r_2)$
Total surface area of frustum of a cone	$\pi l(r_1 + r_2) + \pi (r_1^2 + r_2^2)$

Statistics

S.no	Term	Description
1	Statistics	Statistics is a broad mathematical discipline which studies ways to collect, summarize, and draw conclusions from data
2	Data	A systematic record of facts or different values of a quantity is called data .
		Data is of two types - Primary data and Secondary data.
		Primary Data : The data collected by a researcher with a specific purpose in mind is called primary data.
		Secondary Data: The data gathered from a source where it already exists is called secondary

		data	
3	Features of data	• • • • • • •	Statistics deals with collection, presentation, analysis and interpretation of numerical data. Arranging data in an order to study their salient features is called presentation of data. Data arranged in ascending or descending order is called arrayed data or an array Range of the data is the difference between the maximum and the minimum values of the observations Table that shows the frequency of different values in the given data is called a frequency distribution table A frequency distribution table that shows the frequency of each individual value in the given data is called an ungrouped frequency distribution table. A table that shows the frequency of groups of values in the given data is called a grouped frequency distribution table The groupings used to group the values in given data are called classes or class- intervals. The number of values that each class contains is called the class size or class width. The lower value in a class is called the lower class limit. The higher value in a class is called the upper class limit. Class mark of a class is the mid value of the two limits of that class. A frequency distribution in which the upper limit of one class differs from the lower limit of the succeeding class is called an Inclusive or discontinuous Frequency Distribution. A frequency distribution in which the upper limit of one class coincides from the lower limit of the succeeding class is called an

		Distribution
4	Bar graph	A bar graph is a pictorial representation of data in which rectangular bars of uniform width are drawn with equal spacing between them on one axis, usually the x axis. The value of the variable is shown on the other axis that is the y axis.
		Days of Snow
5	Histogram	A histogram is a set of adjacent rectangles whose areas are proportional to the frequencies of a given continuous frequency distribution
6	Mean	The mean value of a variable is defined as the sum of all the values of the variable divided by the number of values. $a_m = \frac{a_1 + a_2 + a_3 + a_4}{4} = \frac{\sum_{i=1}^{n} a_i}{n}$
7	Median	The median of a set of data values is the middle value of the data set when it has been arranged in ascending order. That is, from the smallest value to the highest value Median is calculated as

		$\frac{1}{2}(n+1)$
		Where n is the number of values in the data
		If the number of values in the data set is even, then the median is the average of the two middle values.
8	Mode	Mode of a statistical data is the value of that variable which has the maximum frequency

S.no	Term	Description
Sille		
1	Mean for Ungroup Frequency table	Mean is given by $M = \frac{\sum f_i x_i}{\sum f_i}$
2	Mean for group Frequency table	In these distribution, it is assumed that frequency of each class interval is centered around its mid-point i.e. class marks $Class mark = \frac{Upper \ class \ limit + Lower \ class \ limit}{2}$ Mean can be calculated using three method a) Direct method $M = \frac{\sum f_i x_i}{\sum f_i}$ b) Assumed mean method $M = a + \frac{\sum f_i d_i}{\sum f_i}$

Where

a=> Assumed mean

$$d_i \Rightarrow x_i - a$$

c) Step deviation Method

$$M = a + \frac{\sum f_i u_i}{\sum f_i} h$$

Where

a=> Assumed mean

 $u_i => (x_i - a)/h$

3

Mode forModal class: The class interval having highest frequency is
called the modal class and Mode is obtained using the modal
classgroupedclassfrequency table

$$M_o = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$$

		Where I = lower limit of the modal class, h = size of the class interval (assuming all class sizes to be equal), f_1 = frequency of the modal class, f_0 = frequency of the class preceding the modal class, f_2 = frequency of the class succeeding the modal class.
4	Median of a	For the given data, we need to have class interval, frequency distribution and cumulative frequency distribution
	grouped data frequency table	Median is calculated as

$$M_m = l + \left(\frac{2}{f} - cf}{f}\right)h$$
Where
$$I = Iower limit of median class, n = number of observations, cf = cumulative frequency of class preceding the median class, f = frequency of median class, h = class size (assuming class size to be equal)
$$3 Median = Mode + 2 Mean$$
Probability
$$Probability$$
S.n Term
Pescription
It is a probability of event which is calculated based on experiments$$

Emprical Probability No of trails which expected outcome

 $=\frac{No of trails which expected outcome came}{Total Number of trials}$

Example:

A coin is tossed 1000 times; we get 499 times head and

501 times tail, So empirical or experimental probability of getting head is calculated as $p = \frac{499}{1000} = .499$ Empirical probability depends on experiment and different will get different values based on the experiment2Important point about events1If the event A, B, C covers the entire possible outcome in the experiment. Then, $P(A) + P(B) + P(C)$ $= 1$ 3impossible event4Sure or certain event5Probability of any event5Probability of any event6 $Q \le P(E) \le 1$	S.n	Term	Description
501 times tail, So empirical or experimental probability of getting head is calculated as $p = \frac{499}{1000} = .499$ Empirical probability depends on experiment and different will get different values based on the experiment2Important point about events1If the event A, B, C covers the entire possible outcome in the experiment. Then, $P(A) + P(B) + P(C)$ =13impossible event4Sure or certain event5Probability of any event6Probability of any event7Probability of any event9Probability of any event		<i>K</i>	
501 times tail, So empirical or experimental probability of getting head is calculated as $p = \frac{499}{1000} = .499$ Empirical probability depends on experiment and different will get different values based on the experiment2Important point about eventsIf the event A, B, C covers the entire possible outcome in the experiment. Then, P (A) +P (B) +P(C) =13impossible event4Sure or certain event4Sure or certain event4Sure or certain event501 times tail, Sure or certain event501 times tail, Sure or certain event501 times tail, corumnal probability of an event (X) which is sure (or certain) to occur is 1. Such an event is called a sure event or a certain eventF(X) =1	5	Probability of any event	Probability of any event can be as $0 \le P(E) \le 1$
501 times tail, So empirical or experimental probability of getting head is calculated as $p = \frac{499}{1000} = .499$ Empirical probability depends on experiment and different will get different values based on the experiment 1 f the event A, B, C covers the entire possible outcome in the experiment. Then, P (A) +P (B) +P(C) =1 3 impossible event The probability of an event (U) which is impossible to occur is 0. Such an event is called an impossible event P (U)=0	4	Sure or certain event	The probability of an event (X) which is sure (or certain) to occur is 1. Such an event is called a sure event or a certain event P(X) =1
501 times tail,So empirical or experimental probability of getting head is calculated as $p = \frac{499}{1000} = .499$ Empirical probability depends on experiment and different will get different values based on the experiment2Important point about eventsIf the event A, B, C covers the entire possible outcome in the experiment. Then, $P(A) + P(B) + P(C)$ $=1$	3	impossible event	The probability of an event (U) which is impossible to occur is 0. Such an event is called an impossible event P (U)=0
501 times tail, So empirical or experimental probability of getting head is calculated as $p = \frac{499}{1000} = .499$ Empirical probability depends on experiment and different will get different values based on the experiment	2	Important point about events	If the event A, B, C covers the entire possible outcome in the experiment. Then, P(A) +P(B) +P(C) =1
			501 times tail, So empirical or experimental probability of getting head is calculated as $p = \frac{499}{1000} = .499$ Empirical probability depends on experiment and different will get different values based on the experiment

1	Theoretical Probability	The theoretical probability or the classical probability of the event is defined as $P(E) = \frac{Number \ of \ outcome \ favourable \ to \ E}{Number \ of \ all \ possible \ outcome \ of \ the \ experiment}}$
2	Elementary events	An event having only one outcome of the experiment is called an elementary event. "The sum of the probabilities of all the elementary events of an experiment is 1." I.e. If we three elementary event A,B,C in the experiment ,then $P(A)+P(B)+P(C)=1$
3	Complementar y events	The event \bar{A} , representing 'not A', is called the complement of the event A. We also say that \bar{A} and A are complementary events. Also $P(A) + P(\bar{A}) = 1$
4	Sure or certain event	The probability of an event (X) which is sure (or certain) to occur is 1. Such an event is called a sure event or a certain event P(X) =1
5	Probability of any event	Probability of any event can be as $0 \le P(E) \le 1$
	\mathcal{O}	