Mathematics revision sheet for class 11 and class 12 physics

April 9, 2012

Differentiation

We have two quantities x and y such that $y=f(x)$ where $f(x)$ is some function of x.We may be interested in finding followings things

1. $\frac{d y}{d x}$

2. Maximum and Minimum values of y.It can be find with the method of Maxima and Minima
$\frac{d y}{d x}$ is the called the derivative of y w.r.t to x
It is defined as
$\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta y}{\Delta x}\right)$ Some commonly known functions and their derivatives are:-
$\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}$
$\frac{d(\sin x)}{d x}=\cos x$
$\frac{d(\cos x)}{d x}=-\sin x$

$$
\begin{aligned}
& \frac{d(\tan x)}{d x}=\sec ^{2} \\
& \frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} \\
& \frac{d(\sec x)}{d x}=\sec x t a n x \\
& \frac{d(\ln x)}{d x}=\frac{1}{x} \\
& \frac{d\left(e^{x}\right)}{d x}=e^{x}
\end{aligned}
$$

Some important and useful rules for finding derivatives of composite functions

1. $\frac{d}{d x}(c y)=c \frac{d y}{d x}$ where c is constant
2. $\frac{d}{d x}(a+b)=\frac{d a}{d x}+\frac{d a}{d x}$ where a and b are function of x
3. $\frac{d}{d x}(a b)=a \frac{d b}{d x}+b \frac{d a}{d x}$
4. $\frac{d}{d x}\left(\frac{a}{b}\right)=\frac{\left[b \frac{d a}{d x}-a \frac{d b}{d x}\right]}{b^{2}}$
5. $\frac{d y}{d x}=\left(\frac{d y}{d a}\right)\left(\frac{d a}{d x}\right)$
$6 \cdot \frac{d^{2} y}{d x^{2}}=\left(\frac{d}{d x}\right)\left(\frac{d y}{d x}\right)$

Maximum and Minimum values of y

Step 1: fine the derivative of y w.r.t x
$\left(\frac{d y}{d x}\right)$
Step2: Equate
$\frac{d y}{d x}=0$
Solve the equation to find out the values of x
Step3: find the second derivative of y w.r.t x and calculate the values of $\frac{d^{2} y}{d x^{2}}$
for the values of x from step2
if $\frac{d^{2} y}{d x^{2}}>0$ then the value of x corresponds to mimina of y then $y_{\text {min }}$ can be
find out by putting this value of x
if $\frac{d^{2} y}{d x^{2}}<0$ then the value of x corresponds to maxima of y then $y_{\max }$ can be find out by putting this value of x

Integration

$$
I=\int_{a}^{b} f(x) d x
$$

It reads as integration of function $f(x)$ w.r.t. x within the limits from $x=a$ to $\mathrm{x}=\mathrm{b}$.

Integration of some important functions are
$\int \sin x d x=-\cos x$
$\int \cos x d x=\sin x$
$\int \sec ^{x} d x=\tan x$
$\int \operatorname{cosec}^{x} d x=-\cot x$
$\int \frac{1}{x} d x=\ln x$
$\int x^{n} d x=\frac{x^{n+1}}{n+1}$
$\int e^{x} d x=e^{x}$
Useful rules for integration are
$\int c f(x) d x=c \int f(x) d x$
$\int[f(x)+h(x)]=\int f(x) d x+\int h(x) d x$
$\int f(x) g(x) d x=f(x) \int g(x) d x-\int\left(f^{\prime}(x) \int g(x) d x\right) d x$

This documeny is created by http://physicscatalyst.com

