Light: Reflection and Refraction Revision Notes

Reflection of Light

1. Laws of Reflection:

- The angle of incidence is equal to the angle of reflection.
- The incident ray, the reflected ray, and the normal to the surface at the point of incidence all lie in the same plane.

2. Types of Reflection:

- Regular Reflection: Occurs on smooth surfaces; the reflected rays are parallel.
- **Diffuse Reflection**: Occurs on rough surfaces; the reflected rays scatter in different directions.

3. Image Formation by Plane Mirrors:

- The image is virtual, upright, and of the same size as the object.
- The image distance from the mirror equals the object distance.

Spherical Mirrors

1. Types:

- Concave Mirror: Converges light rays; used in headlights, solar furnaces.
- Convex Mirror: Diverges light rays; used in rear-view mirrors.

2. Mirror Formula:

- $\circ \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$
- \circ Where f is the focal length, v is the image distance, and u is the object distance.

3. Magnification (m):

- $\circ m = \frac{h'}{h} = \frac{-v}{u}$
- \circ $\,$ Where h^{\prime} is the height of the image and h is the height of the object.

Refraction of Light

1. Laws of Refraction:

- The incident ray, the refracted ray, and the normal to the interface of two media all lie in the same plane.
- The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant (Snell's Law).

2. Refractive Index:

- \circ $n = \frac{c}{v}$
- Where n is the refractive index, c is the speed of light in vacuum, and v is the speed of light in the medium.

3. Critical Angle and Total Internal Reflection:

 When light travels from a denser to a rarer medium, it is completely reflected at the boundary if the angle of incidence exceeds the critical angle.

Lenses

1. Types:

- Convex Lens: Converging lens; used in magnifying glasses, cameras.
- Concave Lens: Diverging lens; used in spectacles for myopia.

2. Lens Formula:

$$\circ \ \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

3. Magnification (m):

4. Power of a Lens (P):

$$\circ \ P = rac{1}{f}$$
 (in dioptres, where f is in meters)

These notes should cover the key points for quick revision on light, reflection, and refraction. For more detailed explanations and examples, you can refer to the full text on the Physics Catalyst page.