Physics Mechanics Formula Sheet

Physics Equations (Mechanics)

1. Kinematic Equations (Constant Acceleration)

$$\circ$$
 $s = ut + \frac{1}{2}at^2$

$$\circ \ \ s = vt - \tfrac{1}{2}at^2$$

$$\circ$$
 $s=rac{u+v}{2}\cdot t$

$$\circ v = u + at$$

$$v^2 = u^2 + 2as$$

2. Forces and Motion

- \circ Newton's Second Law: F=ma
- $\circ~$ Newton's Third Law: $F_{
 m A~on~B} = -F_{
 m B~on~A}$
- $\circ \ \ {\rm Weight:} \ W=mg$
- \circ Hooke's Law: F=kx

3. Work and Energy

$$\circ \; \; {
m Work:} \, W = Fd$$

$$\quad \text{o Work (with angle): } W = F\cos\theta\cdot d \\$$

$$\circ \;\;$$
 Work (Elastic): $W=rac{1}{2}Fx$

$$\circ \;\;$$
 Work (Spring): $W=rac{1}{2}kx^2$

$$\circ$$
 Kinetic Energy: $E_k=rac{1}{2}mv^2$

$$\circ~$$
 Gravitational Potential Energy: $E_g=mgh$

$$\circ~$$
 Elastic Potential Energy: $E=rac{1}{2}kx^2$

4. Stress and Strain (Elasticity)

$$\circ$$
 Stress: $\sigma = \frac{F}{A}$

$$\circ$$
 Strain: $\epsilon = \frac{L-L_0}{L_0}$

$$\circ$$
 Young's Modulus: $E=rac{\sigma}{\epsilon}$

5. **Power**

• Power:
$$P = \frac{W}{t}$$