NCERT Solutions for Practical Geometry

Exercise 14.1

Question 1:

Draw a circle of radius 3.2 cm

Answer:

Step 1 Open the compasses for the required radius of 3.2 cm .
Step 2 Mark a point with a sharp pencil where we want the centre of the circle to be. Name it as 0 .
Step 3 Place the pointer of the compasses on O.
Step 4 Turn the compasses slowly to draw the circle.

Question 2:

With the same centre 0 , draw two circles of radii 4 cm and 2.5 cm .

Answer:

Step 1 Open the compasses for the required radius of 2.5 cm .
Step 2 Mark a point with a sharp pencil where we want the centre of the circle to be. Name it as 0.
Step 3 Place the pointer of the compasses on O.
Step 4 Turn the compasses slowly to draw the circle.
Step 5. Now Open the compasses for the required radius of 4 cm .
Step 6. Place the pointer of the compasses on O and Turn the compasses slowly to draw the circle

Question 3:

Draw a circle and any two of its diameters. If you join the ends of these diameters, what is the figure obtained? What figure is obtained if the diameters are perpendicular to each other? How do you check your answer?

Answer:

(i) By joining the ends of two diameters, we get a rectangle. By measuring, we find $A D=B C, A C=B D$ i.e., pairs of opposite sides are equal and $\angle A=\angle B=\angle C=\angle D=$ 90 i.e. each angle is of 90°. Hence, it is a rectangle.

A

(ii) If the diameters are perpendicular to each other, then by joining the ends of two diameters, we get a square. By measuring, we find that $A B=B C=C D=D A$, i.e., all four sides are equal. Also $\angle A=\angle B=\angle C=L \angle D=90^{\prime}$, i.e. each angle is of 90^{\prime}. Hence, it is a square.

3
D

Question 4:

Draw any circle and mark points A, B and C such that
(a) A is on the circle.
(b) B is in the interior of the circle.
(c) C is in the exterior of the circle.

Answer:
(1) Point O is marked by using the pencil and then circle's centre is drawn
(2) Compasses pointer is placed at O after that circle is drawn slowly using the compasses

Now points are marked as below
A is on the circle.
B is in the interior of the circle.
C is in the exterior of the circle.

4

Question 5:

Let A, B be the centers of two circles of equal radii; draw them so that each one of them passes through the centre of the other. Let them intersect at C and D. Examine whether $A B$ and $C D$ are at right angles

Answer:

Draw two circles of equal radii taking A and B as their centre such that one of them passes through the centre of the other. They intersect at C and D. Join $A B$ and CD. Yes, $A B$ and $C D$ intersect at right angle as $\angle C O B$ is 90 .

Exercise 14.2

Question 1:

Draw a line segment of length 7.3 cm using a ruler.

Answer:

(i)At the point A make place the zero mark of the ruler
(ii)And pick appoint B at the exact distance of 7.3 cm from the point A
(iii) Now join $A B$

Question 2:

Construct a line segment of length 5.6 cm using ruler and compasses.

Answer:

(i) Draw a line I. Mark a point A on a line I.
(ii) Place the compasses pointer on the zero mark of the ruler. Open it to place the pencil point up-to the 5.6 cm mark.
(iii) Now place the pointer of compasses on A and swing an arc to cut I at B.

Question 3:

Construct $A B$ of length 7.8 cm . From this, cut off $A C$ of length 4.7 cm . Measure $B C$.

Answer:

(i) Draw a line I. Mark a point A on a line I.
(ii) Place the compasses pointer on the zero mark of the ruler. Open it to place the pencil point up-to the 7.8 cm mark.
(ii) Now place the pointer of compasses on A and swing an arc to cut I at B.
(iii) Now Place the compasses pointer on the zero mark of the ruler. Open it to place the pencil point up-to the 4.7 cm mark.
(iv) Now place the pointer of compasses on A and swing an arc to cut I at C.
(v) Now when you measure the length BC with the help of ruler, you will find it as 3.1 cm

Question 4:

Given $A B$ of length 3.9 cm , construct $P Q$ such that the length of $P Q$ is twice that of $A B$. Verify by measurement.

(Hint: Construct $P X$ such that length of $P X=$ length of $A B$; then cut off $X Q$ such that $X Q$ also has the length of $A B$.)

Answer:

(i) A Line is drawn ' l ' and a point P is taken on it
(ii) Draw line segment $A B$ of length 3.9 cm
(iii) Now by adjusting the compass to the length $A B$ and placing the pointer of compasses on P and swing an arc to cut I at X .
(iv) Now placing the pointer of compasses on X and swing an arc to cut I at Q.

Now, measurement can find that $P Q=7.8 \mathrm{~cm}$
$=2 \times 3.9 \mathrm{~cm}$

Question 5:

Given $A B$ of length 7.3 cm and $C D$ of length 3.4 cm , construct a line segment $X Y$ such that the length of $X Y$ is equal to the difference between the lengths of $A B$ and $C D$. Verify by measurement

Answer:

(i) First draw $A B$ of length 7.3 cm and $C D$ of length 3.4 cm

(ii) Now by adjusting the compass to the length CD and placing the pointer of compasses on A and swing an arc to cut I at P.

(iii) Now Draw Line is drawn ' I ' and a point X is taken on it
(iv) Now by adjusting the compass to the length PB and placing the pointer of compasses on A and swing an arc to cut I at Y .

$$
X Y=7.3-3.4=3.9 \mathrm{~cm}
$$

Exercise 14.3

Question 1:

Draw any line segment PQ. Without measuring PQ, construct a copy of PQ.

Answer:

Method of construction.

(i) First, we draw a line segment PQ
(ii) Now construct a line of length ' I '. Point A is marked
(iii) Now by adjusting the compass to the length PQ and placing the pointer of compasses on A and swing an arc to cut I at B.

Now $A B$ is the copy of $P Q$

Question 2.

Given some line segment AB , whose length you do not know, construct PQ such that the length of PQ is twice that of AB

Answer:

(i) Draw the line segment PQ whose certain length is unknown
(ii) Now construct a line of length ' I '. Point A is marked
(iii) Now by adjusting the compass to the length $P Q$ and placing the pointer of compasses on A and swing an arc to cut I at O.
(iv) Now again keeping the same length on the compass and placing the pointer of compasses on O and swing an arc to cut I at B .
(v)Now $A B=2 P Q$

Exercise 14.4

Question 1:

Draw any line segment $A B$. Mark any point M on it. Through M, draw a perpendicular to $A B$.
(use ruler and compasses)

Answer

A

(i) Draw the line segment $A B$
(ii) Make a point M on it
(iii) With M as midpoint and with some radius, an intersecting arc is drawn the line at 2 points X and Y .
(iv) With X and Y as centers as well as radius more than OX , draw 2 arcs, they cut together at L.
(v) Join LM Then LM is perpendicular to PQ through O point.

Question 2:

Draw any line segment PQ. Take any point R not on it. Through R , draw a perpendicular to PQ. (use ruler and set-square)

Answer:

(i)A set-square is placed on PQ such that one arm of its right angle aligns along PQ (ii) A ruler is placed along the edge opposite to the right angle of the set-square.
(iii) Hold the ruler fixed. Set square slide the along the ruler till the point R touches set square's other arm
(iv) Hold the set-square firmly in this position. Draw RT along the edge of the setsquare.

Question 3:

Draw a line I and a point X on it. Through X, draw a line segment XY perpendicular to 1 .

Now draw a perpendicular to XY at Y . (use ruler and compasses)
Answer:

(i)Make a line ' I ' and take point X on it.
(ii) With X as centre and a certain radius, an arc is draw at intersecting the line ' I ' at 2 points A and B.
(iii) With P and Q as centers and a radius greater than XA , draw 2 arcs, which cut each other at C.
(iv) Join $X C$ and produce it to Y. Then $X Y$ is perpendicular to ' I '
(v) With Y as centre and a certain radius, draw an arc intersecting XY at two points E and F.
(vi) With E and F as centers and radius greater than YE, draw 2 arcs and they cut each other at G.
(vii) Join YG, then YG is perpendicular to $X Y$ at Y

Exercise 14.5

Question 1:

Draw AB of length 7.3 cm and find its axis of symmetry.

Answer:

Axis of symmetry of line segment $A B$ will be the perpendicular bisector of $A B$. So, we need to draw the perpendicular bisector of $A B$.
(i)Draw a line segment is drawn $A B=7.3 \mathrm{~cm}$
(ii) With A and B as centers and radius more than half of $A B$, construct 2 arcs which intersect each other at P and Q.
(iii) Join PQ. Then PQ is the symmetry axis of the segment line $A B$.

Question 2:

Draw a line segment of length 9.5 cm and construct its perpendicular bisector.

Answer:

(i)Draw a line segment is drawn $A B=9.5 \mathrm{~cm}$
(ii) With A and B as centers and radius more than half of $A B$, construct 2 arcs which intersect each other at P and Q .
(iii) Join $P Q$. Then $P Q$ is the symmetry axis of the segment line $A B$.

Question 3:

Draw the perpendicular bisector of XY whose length is 10.3 cm .
(a) Take any point P on the bisector drawn. Examine whether $\mathrm{PX}=\mathrm{PY}$.
(b) If M is the mid-point of $X Y$, what can you say about the lengths $M X$ and $X Y$?

Answer:

(i)Draw a line segment is drawn $X Y=10.3 \mathrm{~cm}$
(ii) With X and Y as centre and radius more than half of $X Y$, draw two arcs which intersect each other at A and B.
(iii) Join $A B$. Then $A B$ is the required perpendicular bisector of $X Y$

Now,
(iv) Point P is taken on the drawn bisector. By using the divider and we can check that that $P X=P B$
(v) If M is the midpoint of $X Y$, then $M X=M Y=1 / 2(X Y)$

Question 4:

Draw a line segment of length 12.8 cm . Using compasses, divide it into four equal parts. Verify by actual measurement.

Answer

(i)Draw a line segment is drawn $A B=12.8 \mathrm{~cm}$
(ii) A perpendicular bisector of line $A B$ is drawn which cuts it at a point C. So, is the mid-point of $A B$
(iii) A perpendicular bisector of line $A C$ is drawn which cuts it at D. So, D is the midpoint of AC
(iv) Again, A perpendicular bisector of line $C B$ is drawn which cuts it at E. So, E is the midpoint of CB
v) Thus, point D, C, E divides the line segment $A B$ in the 4 equal parts.
(6) By actual measurement, we can find that $A D=D C=C E=E B=4.2 \mathrm{~cm}$

Question 5:

With PQ of length 6.1 cm as diameter, draw a circle

Answer:

(i) Draw a line segment $P Q=6.1 \mathrm{~cm}$.
(ii) A perpendicular bisector is drawn which cuts, it at O . So, O is the mid-point of PQ.
(iii) With O as centre and OP as s radius, draw a circle. Now PQ will be the diameter of the circle drawn

Question 6:

Draw a circle with centre C and radius 3.4 cm . Draw any chord AB . Construct the perpendicular bisector of AB and examine if it passes through C

Answer:

(i) With centre C draw a circle and radius 3.4 cm .
(ii)Draw a Chord AB
(iii) With A and B as centers and radius more than half of $A B$, make 2 arcs which cut each other at P and Q.
(iv) Join PQ. So, PQ is the perpendicular bisector of AB
(v) You will notice, it will pass through the center C of the circle

Question 7:

Repeat Question 6, if AB happens to be a diameter.

Answer:

A

(i)Draw a circle with centre C and radius 3.4 cm .
(ii) AB diameter is drawn which passes through the point C
(iii) With A and B is taken as centers and radius more than half of it, make 2 arcs which intersect each other at P and Q.
(iv) Join $X Y$. Then $X Y$ is the perpendicular bisector of $A B$
(v) You will notice, it will pass through the center C of the circle

Question 8:

Draw a circle of radius 4 cm . Draw any two of its chords. Construct the perpendicular bisectors of these chords. Where do they meet?

Answer:

(i) Draw the circle with O and radius 4 cm .
(ii) Draw any two chords $A B$ and $C D$ in this circle.
(iii) Taking A and B as centers and radius more than half $A B$, draw two arcs which intersect each other at points X and Y
(iv) Join $X Y$. Then $X Y$ is the perpendicular bisector of chord $A B$.
(v) Similarly draw PQ the perpendicular bisector of chord CD.
(vi) We will notice that These two perpendicular bisectors meet at O , the centre of the circle.

Question 9:

Draw any angle with vertex O. Take a point A on one of its arms and B on another such that OA $=\mathrm{OB}$. Draw the perpendicular bisectors of OA and OB.
Let them meet at P . Is $\mathrm{PA}=\mathrm{PB}$?

Answer:

(I)Draw any angle with vertex 0 .
(ii) Take a point A on one of its arms and B on another such that $O A=O B$.
(iii) Draw perpendicular bisector of OA as PQ and perpendicular bisector of OB as XY
(iv) Let them meet at P. Join PA and PB.
(v) With the help of divider, we check that $P A=P B$.

Exercise 14.6

Question 1:

Draw $\angle \angle \mathrm{POQ}$ of measure 75° and find its line of symmetry.

Answer:

Follow the steps of construction:
(a) Construct a line I and mark a point O on it.
(b) Place the pointer of the compasses at O and draw an arc of any radius which intersects the line I at A.
(c) Taking same radius, with centre A, cut the previous arc at B.
(d) Join $O B$, then $\angle B O A=60^{\circ}$
(e) Taking same radius, with centre B, cut the previous arc at C.
(f) Draw bisector of $\angle B O C$. The angle is of $\angle B O C$. Mark, it at D. Thus, $\angle D O A=90^{\circ}$ (g) Draw OP as bisector of $\angle \mathrm{DOB}$ Thus, $\angle P O A=75^{\circ}$
(h) Draw OX as bisector of $\angle \mathrm{POA}$

Thus, $\angle X O A=37.5^{\circ}$

Question 2:

Draw an angle of measure 147° and construct its bisector

Answer:

Follow the steps of construction:
(a) Draw a line OA
(b) Using protractor, construct $\angle A O B=147^{\circ}$
(c) Taking the centre as O and any suitable radius, draw an arc which cuts the arms $O A$ and $O B$ at X and Y respectively.
(d) Taking X as the centre and radius more than half of $X Y$, draw an arc.
(e) Taking Y as centre and with the same radius, draw another arc which cut the previous at Z.
(f) Join OZ and produce it.
(g) Thus, $O Z$ is the required bisector of $\angle A O B$.

Question 3:

Draw a right angle and construct its bisector

Answer:

Follow the steps of construction:
(a) Draw a line PQ and take a point O on it.
(b) Taking O as centre and convenient radius, draw an arc which intersects PQ at A and B.
(c) Taking A and B as centers and radius more than half of $A B$, draw two arcs which intersect each other at X.
(d) Join $O X$. Thus, $\angle X O Q$ is the required right angle.
(e) Taking B and C as centre and radius more than half of BC, draw two arcs which intersect each other at the point Y.
(f) Join OY. Thus, OY is the required bisector of $\angle X O Q$.

Question 4:

Draw an angle of measure 153° and divide it into four equal parts.

Answer:

Follow the steps of construction:
(a) Draw a ray OP
(b) At O, with the help of a protractor, construct $\angle \mathrm{QOP}=153^{\circ}$
(c) Draw OS as the bisector of $\angle \mathrm{QOP}$.
(d) Again, draw OT as bisector of $\angle \mathrm{QOS}$
(e) Again, draw $O R$ as bisector of $\angle S O P$.
(f) Thus, OT, OS and OR divide $\angle A O B$ in four equal parts.

Question 5:

Construct with ruler and compasses, angles of following measures:
(a) 60° (b) 30° (c) 90° (d) 120° (e) 45° (f) 135°

Answer:

(1)60。

(i) Draw a ray OX
(ii) Taking O as centre and convenient radius, mark an arc, which intersects OX at A.
(iii) Taking A as centre and same radius, cut previous arc at B.
(iv) Join OB.

The, $\angle Y O X$ is required angle of 60°
(2) $30 \circ$

(i) Draw the angle 60° as given previous question
(ii) Put the pointer on A and mark an arc.
(iii) Put the pointer on B and with same radius, cut the previous arc at C .
(iv) Join OC

Thus, \angle COX is required angle of 30°
(3) 90

(i) Draw a ray OX
(ii) Taking O as centre and convenient radius, mark an arc, which intersects A at O X.
(iii) Taking A as centre and same radius, cut previous arc at B.
(iv) Taking B as centre and same radius, draw another arc intersecting the same arc at C.
(v) Taking C and B as centers and same radius, draw two arcs intersecting each other at D.
(vi) Join OD and produce it to form a ray OY

The, $\angle Y O X$ is required angle of 90°
(4) 120 。

(i) Draw a ray OX
(ii) Taking O as centre and convenient radius, mark an arc, which intersects OX at A.
(iii) With A as centre and same radius, cut previous arc at B .
(iv) Now with B as centre and same radius cut the arc at C.
(v) Join OC.

The, $\angle \mathrm{YOX}$ is required angle of 120°
(5) $45 \circ$

(i) Draw a ray OX
(ii) Taking O as centre and convenient radius, mark an arc, which intersects OA at X .
(iii) With A as centre and same radius, cut previous arc at B.
(iv) With B as centre and same radius, draw another arc intersecting the same arc at E .
(v) With B and C as centers and same radius, draw two arcs intersecting each other at D.
(vi) Join OD. The, $\angle \mathrm{DOA}$ is required angle of 90°
(vii) Now Draw the bisector of $\angle D O A$. With E and A as center, draw two arcs intersecting each other at F and Join OF

Thus, $\angle Y O X$ is required angle of 45°
(6) $135 \circ$

(i) Draw a line $A B$ and take a point O on it.
(ii) Taking O as centre and convenient radius, mark an arc, which intersects $A B$ at C and D
(iii) With C and D as centers and radius more than half of CD, draw two arcs intersecting each other at E.
(iv) Join OE. Thus, $\angle A O E=90$.
(v) Draw OF the bisector of $\angle A O E$.

The, $\angle B O F$ is required angle of 135

Question 6:

Draw an angle of measure 45。 and bisect it.

Answer:

(i) Draw a line $A B$ and take a point O on it.
(ii) With O as centre and a convenient radius, draw an arc which intersects $A B$ at two points C and D
(iii) With C and D as centers and radius more than half of $A C$, draw two arcs which intersect each other at E.
(iv)Join OE. Then $\angle E O B$ is an angle of 90
(v) Draw OG as the bisector of $\angle E O B$. Thus, $\angle G O B=45 \circ$
(vi) Again, draw OI as the bisector of $\angle \mathrm{GOB}$.

Thus, $\angle \mathrm{IOB}=22.5$ 。

Question 7:

Draw an angle of measure $135 \circ$ and bisect it.
Answer:
(i) Draw a line $A B$ and take a point O on it.
(ii) Taking O as centre and convenient radius, mark an arc, which intersects AB at C and D
（iii）With C and D as centers and radius more than half of $C D$ ，draw two arcs intersecting each other at E ．
（iv）Join OE．Thus，$\angle A O E=90$ ．
（v）Draw OF the bisector of $\angle A O E$ ．
The，$\angle B O F$ is required angle of 135

（vi）With G and C as centers and radius more than half of GC，draw two arcs intersecting each other at H
（vii）Join OH
The，$\angle \mathrm{HOB}=67.5$ 。

Question 8：

Draw an angle of 70° Make a copy of it using only a straight edge and compasses

Answer：

（i）Draw an angle 70。 with protractor，$\angle A O B=70$ 。
（ii）Draw the line PQ
（iii）Place the compasses at O and draw an arc to cut the rays of $\angle A O B$ at C and D ．
（iv）Use the same compasses，setting to draw an arc with P as centre，cutting PQ at L．
(v) Set your compasses setting to the length $C D$ with the same radius.
(vi) Place the compasses pointer at L and draw the arc to cut the arc drawn earlier at M.
(vii) Join PM and extend the line

So $\angle R P Q=70$ 。

Question 9:

Draw an angle of 40° Copy its supplementary angle.

Answer:

(i) Draw an angle of 40。 with the help of protractor, naming $\angle A O B$.
(ii) Draw a line PQ and Take any point R on PQ.
(iii)Place the compasses at O and draw an arc to cut the rays of $\angle A O B$ at C and D.
(iv) Use the same compasses, setting to draw an arc with R as centre, cutting PQ at L.
(v) Set your compasses setting to the length CD with the same radius.
(vi) Place the compasses pointer at L and draw the arc to cut the arc drawn earlier at M .
(vii) Join RM and extend the line
(viii)So, $\angle S R Q=40 \circ$ and $\angle P R S$ is supplementary of it

