Complex Analysis part 2

April 11, 2012

Liouville’s Theorem

If a function $f(z)$ is analytic for all finite values of z, and is bounded then it is a constant. Note:- $e^{z+2\pi i} = e^z$

Taylor’s Theorem

If a function $f(z)$ is analytic at all points inside a circle C, with its centre at point a and radius R then at each point z inside C

$$f(z) = f(a) + (z - a)f'(a) + \frac{1}{2!}(z - a)^2 f''(a) + \ldots + \frac{1}{n!}(z - a)^n f^n(a)$$

Taylor’s theorem is applicable when function is analytic at all points inside a circle.

Laurent Series

If $f(z)$ is analytic on C_1 and C_2 and in the annular region R bounded by the two concentric circles C_1 and C_2 of radii r_1 and r_2 ($r_1 > r_2$) with their centre at a then for all z inside R

$$f(z) = a_0 + a_1(z - a) + a_2(z - a)^2 + \ldots + \frac{b_1}{(z-a)} + \frac{b_2}{(z-a)^2} + \ldots$$

where,

$$a_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(w)dw}{(w-a)^{n+1}}$$

$$b_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(w)dw}{(w-a)^{n+1}}$$
Singular points

If a function \(f(z) \) is not analytic at point \(z=a \) then \(z=a \) is known as a singular point or there is a singularity of \(f(z) \) at \(z=a \) for example \(f(z) = \frac{1}{z^2} \) \(z=2 \) is a singularity of \(f(z) \)

Pole of order \(m \)

If \(f(z) \) has singularity at \(z=a \) then from laurent series expansion
\[
f(z) = a_0 + a_1(z-a) + a_2(z-a)^2 + \ldots + \frac{b_1}{(z-a)} + \frac{b_2}{(z-a)^2} + \ldots + \frac{b_m}{(z-a)^m} + \frac{b_{m+1}}{(z-a)^{m+1}}
\]
if \(b_{m+1} = b_{m+2} = 0 \) then
\[
f(z) = a_0 + a_1(z-a) + a_2(z-a)^2 + \ldots + \frac{b_1}{(z-a)} + \frac{b_2}{(z-a)^2} + \ldots + \frac{b_m}{(z-a)^m}
\]
and we say that function \(f(z) \) is having a pole of order \(m \) at \(z=a \). If \(m=1 \) then point \(z=a \) is a simple pole.

Residue

The constant \(b_1 \), the coefficient of \((z-z_0)^{-1} \), in the Laurent series expansion is called the residue of \(f(z) \) at singularity \(z = z_0 \)
\[
b_1 = Res_{z=z_0}f(z) = \frac{1}{2\pi i} \int_{C_1} f(z)dz
\]

Methods of finding residues

- Residue at a simple pole

 if \(f(z) \) has a simple pole at \(z=a \) then \(Resf(a) = \lim_{z\to a} (z-a)f(z) \)

- If \(f(z) = \frac{\Phi(z)}{\Psi(z)} \) and \(\Psi(a) = 0 \) then \(Resf(a) = \frac{\Phi(z)}{\Psi'(z)} \)
Residue at pole of order m

If $f(z)$ is a pole of order m at $z=a$ then

$$Res f(a) = \frac{1}{(m-1)!} \left\{ \frac{d^{m-1}}{dz^{m-1}} (z-a)^m f(z) \right\}_{z=a}$$

Residue Theorem

If $f(z)$ is analytic in closed contour C except at finite number of points (poles) within C, then

$$\int_C f(z)dz = 2\pi i \text{[sum of the residues at poles within C]}$$

\[1\]

\[1\]This document is created by http://physicscatalyst.com