<table>
<thead>
<tr>
<th>Shape of the body</th>
<th>Axis Of rotation</th>
<th>Expression for Moment of Inertia</th>
</tr>
</thead>
</table>
| One dimensional rod of mass M and length L | 1) Center of Rod and \perp to length
2) One end and \perp to length | $\frac{ML^2}{12}$
$\frac{ML^2}{3}$ |
| Sphere of mass M and Radius | 1) Any diameter
2) Any tangent plane | ($\frac{2}{5}$)MR2
($\frac{7}{5}$)MR2 |
| Circular disc of Mass and radius R | 1) Through center, \perp to plane of Disk
2) any diameter
3) tangent in the plane of the disc
4) tangent \perp to plane of disk | ($\frac{1}{2}$)MR2
($\frac{1}{4}$)MR2
($\frac{5}{4}$)MR2
($\frac{3}{2}$)MR2 |
| Circular ring of mass M and radius R | 1) Through center, \perp to plane of ring
2) any diameter
3) tangent in the plane of the ring
4) tangent \perp to plane of ring | MR^2
($\frac{1}{2}$)MR2
($\frac{3}{2}$)MR2
2MR2 |
| Cylinder of mass M, radius R and length L | 1) own axis
2) through center \perp to length | ($\frac{1}{2}$)MR2
$M \left(\frac{R^2}{4} + \frac{L^2}{12} \right)$ |
| Rectangular lamina of Mass M, length L and breadth B | 1) Length of lamina and in its plane
2) breath of lamina and in its plane
3) Center of lamina and \perp to its plane | $\frac{MB^2}{3}$
$\frac{ML^2}{3}$
$M \left(L^2 + B^2 \right)$
12
$M \left(L^2 + B^2 \right)$
12
$M \left(L^2 + B^2 \right)$
12 |
| Rectangular block of Mass M, Length L, Breadth B and Height H | Through center of block and parallel to Length or breadth or height of the block | $\frac{M(H^2 + B^2)}{12}$
$\frac{M(L^2 + H^2)}{12}$
$\frac{M(L^2 + B^2)}{12}$ |