

Quadratic Formative assessment

Question 1. State which all quadratic equations have real roots, no real roots

- a) $x^2 + x + 7 = 0$
- b) $3x^2 + 6x + 1 = 0$
- c) 9x² +x +3=0
- d) $11x^2 12x 1=0$
- e) $-13x^2 + 3x + 7 = 0$
- f) $2x^2 6x + 3 = 0$
- g) x-(1/x)-3=0 x≠0
- h) $-x^2 2x 2 = 0$

Solution

Nature of roots of Quadratic equation

S.no	Condition	Nature of roots
	b ² -4ac > 0	Two distinct real roots
2	b ² -4ac =0	One real root
3	b ² -4ac < 0	No real roots

Real roots: : (b), (d) ,(e),(f),(g)

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

No real roots : (a) ,(c),(h)

Question 2. Find the roots of the quadratic equation using factorization technique

a) x²-3x-10=0

b) x² -11x+30=0

Solution

a)

x² -5x+2x-10=0

x(x-5) + 2(x-5)=0

(x+2)(x-5)=0

So roots are x=-2 and 5

b) Roots are 5 and 6

Question 3. Find the roots of the quadratic equation using square method

a) x² +4x-5=0

b) 2x²-7x+3=0

Solution

a)

(x+4/2)² -(4/2)² -5=0

(x+2)²-9=0

 $(x+2)^2=9$

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

x+2=±3

x=1 or -5

b)

 $(x-7/4)^2 - (7/4)^2 + 3/2 = 0$

 $(x-7/4)^2 = 49/16 - 3/2$

 $(x-7/4)^2 = 25/16$

x-7/4=±5/4

or

x=1/2 or 3

Question 4 - True or False statement

a) There are no reals roots of the quadratic equation $x^2+4x+5=0$

b) The roots of the equation $x^2-1=0$ are 1,-1

c) A quadratic equation can have at most 2 real roots

d) In a quadratic equation $ax^2 + bx + c = 0$, if a and c are of same sign and b is zero, the quadratic equation has real roots

e) In a quadratic equation $ax^2 + bx + c=0$, if a and c are of opposite sign, then quadratic equation will definitely have real roots

f) for k > 0, the quadratic equation $2x^2+6x-k=0$ will definitely have real roots

g) if the roots of the quadratic equation are rational, the coefficient of the term x will also be rational.

h) if the roots of the quadratic equation are irrational, the coefficient of the term x will also be irrational

I) Every quadratic equation will have rational roots

Solution

- a) True
- b) True
- c) True
- d) false
- e) True
- f) True
- g) true
- h) true
- i) False

}

Question 7 Find a natural number whose square diminished by 84 is thrice the 8 more of given number

a) 21 b) 13 c)11 d) 12

Solution (d)

x²-84=3(x+8) x²-3x-108=0 x= 12 or -9 So answer is 12

Question 8. The roots of the quadratic equation $x^2 + 14x + 40 = 0$ are

a) (4,10) b) (-4,10) c) (-4,-10) d) (4,-10)

Solution (c)

Question 9 The equation $x^5 +x+20=0$

a) is a quadratic equationb) is not a quadratic equation

Solution b

Question 10. The roots of the quadratic equation $x^2+2x+5=0$

a) are real b) are not real

Solution (b)

This material is created by <u>http://physicscatalyst.com/</u> and is for your personal and non-commercial use only.

