Home » General » Complex Numbers Shorts Notes and Formula for JEE Main and Advanced

Complex Numbers Shorts Notes and Formula for JEE Main and Advanced

Complex Numbers

Complex numbers are the numbers of the form $a+ ib$ where $i= \sqrt {-1}$  and a and b are real numbers

Algebra for i

$i= \sqrt {-1}$
$i^2= -1$
$i^3 =i \times i^2= -i$
$i^4= i^2 \times i^2 = 1$
$i^{4n} =1$
$i^n + i^{n+1} + i^{n+2} + i^{n+3} =i^n( 1 + i +i^2 + i^3 ) = i^b(1 + i -1 -i)=0$

Let z1 = x1 + iy1  ­ and z2 = x2 + iy z1 +z2 = (x1 + x2) + i(y1 + y2)

Subtraction of Complex Numbers

Let z1 = x1 + iy1  ­ and z2 = x2 + iy z1 -z2 = (x1 – x2) + i(y1 – y2)

Multiplication of Complex numbers

Let z1 = x1 + iy1  ­ and z2 = x2 + iy

z1 z2 = (x1 + iy1 ) (x2 + iy) =(x1x2 – y1y2) +i(x1y2 +x2y1)

Multiplicative Inverse

Let z= a+ ib , Then Multiplicative inverse is given as
$\frac {1}{z}=z^{-1} = \frac {1}{a+ ib} = \frac {a}{a^2 + b^2} – \frac {ib}{a^2 + b^2}$

Division of Complex Numbers

Let z1 = x1 + iy1  ­ and z2 = x2 + iy
z1 /z2 = (x1 + iy1 ) /(x2 + iy) =z1 z2-1

Conjugate of Complex Number

If z= x+iy then Conjugate is given by $\bar{z} = x-iy$

Properties of Conjugate of Complex Number

If z= x + iy

• $\bar {\left( \bar{z} \right)}= z$
• $z + \bar{z} = 2 Re(z) = 2x$
• $z – \bar{z} = 2 Im(z) = 2iy$
• If $z + \bar{z} = =0$, then $z=-\bar{z}$ and z is purely Imaginary
• $\overline {z_1 + z_2} = \bar{z_1} + \bar{z_2}$
• $\overline {z_1 – z_2} = \bar{z_1} – \bar{z_2}$
• $\overline {z_1 z_2} = \bar{z_1} \bar{z_2}$
• $\overline {z^n} = \left( \bar{z} \right)^n$

Modulus of complex Number

If z= z + iy, then modulus is defined

$|z| = \sqrt {x^2 + y^2}$

Properties of Modulus of complex Number

• $|z| \geq 0$
• If |z| = 0 , then z=0
• |z| > 0, then $z \ne 0$
• $-|z| \leq Re(z) \leq |z|$
• $-|z| \leq Img(z) \leq |z|$
• $z \bar{z} =|z|^2$
• $|z|=|-z|$
• $|z_1 z_2| = |z_1||z_2|$
• $|\frac {z_1}{z_2}| = \frac {|z_1|}{|z_2|}$
• $|z_1 + z_2| \leq |z_1| + |z_2|$
• $|z_1 + z_2| \geq ||z_1| – |z_2||$
• $||z_1| – |z_2|| \leq |z_1 + z_2| \leq |z_1| + |z_2|$
• $|z_1 – z_2| \leq |z_1| – |z_2|$
• $|z^n| = |z|^n$
• $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + (z_1 \bar{z_2} + z_2 \bar{z_1})$
• $|z_1 – z_2|^2 = |z_1|^2 + |z_2|^2 – (z_1 \bar{z_2} + z_2 \bar{z_1})$
• $|z_1 + z_2|^2 + |z_1 – z_2|^2 =2 |z_1|^2 +2 |z_2|^2$
• $|az_1 +b z_2|^2 + |bz_1 -a z_2|^2 =(a^2 + b^2)( |z_1|^2 + |z_2|^2)$

Argand Diagram

Complex number $z=a +ib$ can be represented by a point P (a, b) on a x-y plane. The x -axis represent the real part while the y-axis represent the imaginary part

Important points
(1) The length OP is called the module of z and is denoted by $|z| =\sqrt {x^2 + y^2}$
(2) Purely real number lies on X-axis while purely imaginary number lies on y-axis
(3) The Line OP makes an angle $\theta$ with the positive direction of x-axis in anti-clockwise sense is called the argument or amplitude of z
It is given by
$arg (z) = \tan^{-1} \frac {y}{x}$
The unique value of $\theta$ such that $-\pi < \theta \leq \pi$  is called the principal value of the amplitude or principal argument
(4) The principal argument of the complex number is find using the below steps
Step 1) for z=a+ib , find the acute angle value of $\theta =tan^{-1} \frac {|y|}{|x|}$
Step 2) Look for the values of a ,b
if (a, b) lies in First quadrant then Argument=$\theta$
if (a, b) lies in second quadrant then Argument =$\pi -\theta$
if (a, b) lies in third quadrant then Argument =$-\pi + \theta$
if (a, b) lies in Fourth quadrant then Argument =$-\theta$

Properties of Argument of Complex Numbers

• $arg (z_1z_2)= arg(z_1) + arg (z_2) + 2k \pi$
• $arg (\frac {z_1}{z_2})= arg(z_1) – arg (z_2) + 2k \pi$
• $arg (\frac {z}{\bar{z}})= 2 arg(z) + 2k \pi$
• $arg (\bar{z})= – arg(z)$
• $arg (z^n)= n arg(z) + 2k\pi$

Where k is a integer such that Arg lies between $-\pi$ and $\pi$

Polar Representation

$z= |z| (cos (arg) + i sin(arg)$

Here arg is the principal argument of the complex number

we can write this as

$z= r(cos \theta + \sin \theta)$
where r =|z| and $\theta$ is the principle argument

Euler form

For any real number x, eix = cos x + i sin x
Let z be a non zero complex number; we can write z in the polar form as,
$z = r(cos \theta + i sin \theta ) = re^{i \theta}$, where r is the modulus and $\theta$ is argument of z.

Important point

(1) Multiplying a complex number z with $e^{i \alpha}$ gives

$z \times e^{i \alpha} = r e^{i \theta} \times e^{i \alpha} = r e^{i(\alpha + \theta)}$

(2) $e^{i \theta} + e^{-i \theta} = 2 \cos \theta$

(3) $e^{i \theta} – e^{-i \theta} = 2 i\sin \theta$

(4) $e^{i \theta} + e^{-i \alpha} = e^{i (\theta + \alpha)/2} 2 \cos (\theta – \alpha)/2$

(5) $e^{i \theta} + 1 = e^{i \theta /2} 2 \cos \theta /2$

(6) $e^{i \theta} – e^{-i \alpha} = e^{i (\theta – \alpha)/2} 2 i\sin (\theta – \alpha)/2$

(7)$e^{i \theta} – 1 = e^{i \theta /2} i 2 \sin \theta /2$

Logarithm of the Complex Number

$log _{e} z = log _ {e} |z| e^{i\theta} = log_{e} |z| + i \theta$

General Form

$log _{e} z = log_{e} z + 2n \pi i$

De Moivre’s theorem

De Moivre’s theorem states following cases

• Case I It states that for any integer n,

$(cos \theta + i sin \theta)^n = cos (n \theta) + i sin (n\theta)$
• Case II if n is of the form p/q where p, q are integers and q > 0
then
$(cos \theta + i sin \theta)^n =cos (2k \pi+ \theta)p/q + sin (2k \pi+ \theta)p/q$
Where k=0,1,2,…q-1

Important points

$(cos \theta _1 + i sin \theta_1) (cos \theta _2 + i sin \theta_2) (cos \theta _3 + i sin \theta_3) =cos (\theta _1 + \theta _2 + \theta _3) + i sin (\theta _1 + \theta _2 + \theta _3)$

$(cos \theta – i sin \theta)^n = \cos n \theta – i \sin n\theta$

$(sin \theta + i cos \theta)^n = (-1)^n (\cos n \theta – i \sin n\theta )$

$(sin \theta – i cos \theta)^n = (-1)^n (\cos n \theta + i \sin n\theta)$

$\frac {1}{cos \theta + i sin \theta} = cos \theta – i sin \theta$

How to find the roots of the equation

$(a+ ib)^{p/q}$ where p and q are integers and $q \ne 0$

$(a + ib) = r (\cos \theta + i \sin \theta)$
then $(a+ ib)^{p/q} = r^{p/q} ( \cos \theta + i \sin \theta)^{p/q}$

$=r^{p/q}(\cos \frac {(2k \pi+ \theta)p}{q} + \sin \frac {(2k \pi+ \theta)p}{q} )$

Where k=0,1,2,…q-1

Cube Root of Unity

$z^3 -1=0$
$(z-1)(z^2 + z +1)=0$
$z = 1, \frac {-1 \pm i \sqrt 3}{2}$

We define them as

$\omega = \frac {-1 + i \sqrt 3}{2}$
$\omega ^2 = \frac {-1 – i \sqrt 3}{2}$

Important points

• $1 + \omega + \omega ^2 =1$
• $\omega ^3 =1$
• $\omega ^4 = \omega$
• $\omega ^{3n +1} = \omega$
• $\omega ^{3n +2} = \omega ^2$
• $a^2 + ab + b^2 = (a- b \omega)(a – b\omega ^2)$
• $a^2 – ab + b^2 = (a+ b \omega)(a + b\omega ^2)$
• $a^3 + b^3= (a+b) (a + b \omega) (a + b \omega ^2)$
• $a^3 – b^3= (a-b) (a – b \omega) (a – b \omega ^2)$

nth root of Unity

$z^n -1 =0$
$z^n =1$
$z = 1^{1/n} = (cos 2 k \pi + i \sin 2k \pi)^{1/n}$
$= cos \frac {2 k \pi}{n} + i sin \frac {2 k \pi}{n}$

where k=0,1,2,…n-1

If $\alpha = cos \frac {2 \pi}{n} + i sin \frac {2 \pi}{n}$

(A) Sum of the nth Roots of Unity

$1 + \alpha + \alpha ^2 + \alpha ^3 + ..+ \alpha ^{n-1} = \frac {1 (1 – \alpha ^n)}{1 – \alpha}$
Now as $\alpha ^n =1$, Hence
$1 + \alpha + \alpha ^2 + \alpha ^3 + ..+ \alpha ^{n-1} =0$
So sum of the roots are the nth root of unit is zero

(B) Product of the nth Roots of Unity

$1 \times \alpha \times \alpha ^2 \times \alpha ^3 \times ..\times \alpha ^{n-1} = \alpha^{ 1 + 2 +…(n-1)}=\alpha ^{n(n-1)/2}$
$= (-1)^{n-1}$

Cube root of Any Number

$x^3=a$ is given as

$a^{1/3} , a^{1/3} \omega , a^{1/3} \omega ^2$

This site uses Akismet to reduce spam. Learn how your comment data is processed.