Home » Maths » Derivatives of hyperbolic functions

Derivatives of hyperbolic functions

The derivatives of the hyperbolic functions are quite straightforward and somewhat analogous to the derivatives of their trigonometric counterparts. Here are the derivatives for the six primary hyperbolic functions:

(1) Hyperbolic Sine $sinh$:
$$
\frac{d}{dx} \sinh(x) = \cosh(x)
$$
The derivative of hyperbolic sine is hyperbolic cosine.

Proof
The hyperbolic sine and cosine functions are defined as follows:

$$
\sinh(x) = \frac{e^x – e^{-x}}{2}
$$
$$
\cosh(x) = \frac{e^x + e^{-x}}{2}
$$

Now,

$$
\frac{d}{dx} \sinh(x) = \frac{d}{dx} \left( \frac{e^x – e^{-x}}{2} \right)
$$

$$
= \frac{1}{2}\left( \frac{d}{dx}(e^x) – \frac{d}{dx}(e^{-x})\right)
$$

$$
= \frac{1}{2}(e^x + e^{-x})
$$

This is the definition of $\cosh(x)$:

$$
= \cosh(x)
$$

(2) Hyperbolic Cosine $cosh$:
$$
\frac{d}{dx} \cosh(x) = \sinh(x)
$$
The derivative of hyperbolic cosine is hyperbolic sine.

Proof
The hyperbolic sine and cosine functions are defined as follows:

$$
\sinh(x) = \frac{e^x – e^{-x}}{2}
$$
$$
\cosh(x) = \frac{e^x + e^{-x}}{2}
$$

Now,

$$
\frac{d}{dx}\cosh(x) = \frac{d}{dx}\left( \frac{e^x + e^{-x}}{2}\right)
$$

$$
= \frac{1}{2}\left( \frac{d}{dx}(e^x) + \frac{d}{dx}(e^{-x})\right)
$$

$$
= \frac{1}{2}(e^x – e^{-x})
$$

This is the definition of $\sinh(x)$:

$$
= \sinh(x)
$$

(3) Hyperbolic Tangent $tanh$:
$$
\frac{d}{dx} \tanh(x))= sech^2(x)
$$
The derivative of hyperbolic tangent is the square of hyperbolic secant.

Proof
$$
\frac{d}{dx}\tanh(x) = \frac{d}{dx}\left( \frac{\sinh(x)}{\cosh(x)}\right) = \frac{\cosh(x) \frac{d}{dx} \sinh(x)) – \sinh(x)\frac{d}{dx} \cosh(x))}{\cosh^2(x)}
$$

We know that $\frac{d}{dx} \sinh(x) = \cosh(x)$ and $\frac{d}{dx} \cosh(x) = \sinh(x)$, so substituting these in gives:

$$
= \frac{\cosh(x)\cosh(x) – \sinh(x)\sinh(x)}{\cosh^2(x)}
$$

Simplifying the numerator:

$$
= \frac{\cosh^2(x) – \sinh^2(x)}{\cosh^2(x)}
$$

Using the identity \$cosh^2(x) – \sinh^2(x) = 1$, we get:

$$
= \frac{1}{\cosh^2(x)}
$$

$$
\frac{d}{dx} \tanh(x)) = sech^2(x)
$$

(4) Hyperbolic Cotangent $coth$:
$$
\frac{d}{dx} \coth(x) = -csch^2(x)
$$
The derivative of hyperbolic cotangent is the negative square of hyperbolic cosecant.
Proof

$$
\frac{d}{dx} \coth(x)= \frac{d}{dx}\left( \frac{\cosh(x)}{\sinh(x)}\right) = \frac{\sinh(x)\frac{d}{dx} \cosh(x)) – \cosh(x)\frac{d}{dx} \sinh(x))}{\sinh^2(x)}
$$

We know that $\frac{d}{dx} \cosh(x)) = \sinh(x)$ and $\frac{d}{dx}\sinh(x)) = \cosh(x)$, so substituting these in gives:

$$
= \frac{\sinh(x)\sinh(x) – \cosh(x)\cosh(x)}{\sinh^2(x)}
$$

$$
= \frac{\sinh^2(x) – \cosh^2(x)}{\sinh^2(x)}
$$

Using the identity $\cosh^2(x) – \sinh^2(x) = 1$, we can rewrite the numerator as -1

$$
= \frac{-1}{\sinh^2(x)}
$$

$$
\frac{d}{dx}$coth(x)) = -csch^2(x)
$$

This completes the proof.

(5) Hyperbolic Secant $sech$:
$$
\frac{d}{dx}(sech(x) = -sech(x)\tanh(x)
$$
The derivative of hyperbolic secant involves both hyperbolic secant and hyperbolic tangent.

Proof

$$
\frac{d}{dx} sech(x) = \frac{d}{dx}\left( \frac{1}{\cosh(x)}\right) = \frac{\cosh(x)(0) – 1 \sinh(x))}{\cosh^2(x)}
$$

$$
= \frac{-\sinh(x)}{\cosh^2(x)}
$$

Now, we can express $\sinh(x)$ in terms of $\tanh(x)$ and $\cosh(x)$.

Recall that $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$, so $\sinh(x) = \tanh(x) \cdot \cosh(x)$.

Substituting this into our equation:

$$
= \frac{-\tanh(x) \cdot \cosh(x)}{\cosh^2(x)}
$$

$$
= -\tanh(x) \cdot \frac{1}{\cosh(x)}
$$

Since $\frac{1}{\cosh(x)}$ is $sech(x)$, we finally have:

$$
\frac{d}{dx}(sech(x)) = -sech(x)\tanh(x)
$$

(6) Hyperbolic Cosecant $csch$:
$$
\frac{d}{dx}(csch(x) = -csch(x)\coth(x)
$$
The derivative of hyperbolic cosecant involves both hyperbolic cosecant and hyperbolic cotangent.

Proof

$$
\frac{d}{dx} csch(x) = \frac{d}{dx}\left( \frac{1}{\sinh(x)}\right) = \frac{\sinh(x)(0) – 1 \cosh(x))}{\sinh^2(x)}
$$

$$
= \frac{-\cosh(x)}{\sinh^2(x)}
$$

Now, we can express $\cosh(x)$ in terms of $\coth(x)$ and $\sinh(x)$.

Recall that $\coth(x) = \frac{\cosh(x)}{\sinh(x)}$, so $\cosh(x) = \coth(x) \cdot \sinh(x)$.

Substituting this into our equation:

$$
= \frac{-\coth(x) \cdot \sinh(x)}{\sinh^2(x)}
$$

$$
= -\coth(x) \cdot \frac{1}{\sinh(x)}
$$

Since $\frac{1}{\sinh(x)}$ is $csch(x)$, we finally have:

$$
\frac{d}{dx}(csch(x)) = -csch(x)\coth(x)
$$

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.