Home » Maths » integration of 1 sinx cosx

integration of 1 sinx cosx

we can have three integration of 1 sinx cosx ( integration of 1 /sinx+ cosx , integration of 1 /sinx- cosx and integration of 1 /sinx cosx). Here are formula of these integrals

(I) integration of 1 /sinx+ cosx


Join PhysicsCatalyst WhatsApp Channel


$\int \frac {1}{sinx + cos x} \; dx = \frac {1}{\sqrt{2}} \log \left| \frac {\left(\tan\left(\frac{x}{2}\right) – 1 + \sqrt{2}\right)}{\left(\tan\left(\frac{x}{2}\right) -1- \sqrt{2} \right)}\right| + C$

or
$\int \frac {1}{sinx + cos x} \; dx = \frac {1}{\sqrt{2}} \ln |\tan ( \frac {x}{2} + \frac {\pi}{8}) | + C$

(II) integration of 1 /sinx- cosx

$\int \frac {1}{sinx – cos x} \; dx = \frac {1}{\sqrt 2} ln |\frac {\tan\left(\frac{x}{2}\right) +1- \sqrt 2}{\tan\left(\frac{x}{2}\right) + 2+ \sqrt 2}| + C$

or
$\int \frac {1}{sinx – cos x} \; dx = \frac {1}{\sqrt{2}} \ln |\tan ( \frac {x}{2} – \frac {\pi}{8}) | + C$

(III) integration of 1 /sinx cosx

$\int \frac {1}{sin x cos x} \; dx = \frac{1}{2} \ln |\frac {(\cos(2x) – 1)}{ (\cos(2x) + 1)}| + C$

or

$\int \frac {1}{sin x cos x} \; dx= \ln |tan x| + C$

Proof of integration of 1/sinx+cosx

The integral can be tricky due to the combination of sine and cosine functions in the denominator. A common approach is to use a tangent half-angle substitution, which simplifies the integration of trigonometric functions that involve both sine and cosine.

Method 1

The tangent half-angle substitution is $ t = \tan\left(\frac{x}{2}\right) $. This substitution leads to the identities:

$$
\sin x = \frac{2t}{1 + t^2}, \quad \cos x = \frac{1 – t^2}{1 + t^2}, \quad dx = \frac{2}{1 + t^2} dt
$$

Substituting these into the integral, we get:

$$
\int \frac{1}{\sin x + \cos x} dx = \int \frac{1}{\frac{2t}{1 + t^2} + \frac{1 – t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt
$$

$$
=\int \frac{2}{2t + 1 – t^2} \; dt
$$

$$
=\int \frac{2}{2 – (t^2 + 1 -2t)} \; dt
$$

$$
=\int \frac{2}{(\sqrt 2)^2 – (t-1)^2} \; dt
$$

Now we know that
$\int \frac {1}{a^2 – x^2} dx = \frac {1}{2a} ln |\frac {a+x}{a-x}| + C$
Proof
$\frac {1}{a^2 – x^2} =\frac {1}{2a}[ \frac {1}{a-x} + \frac {1}{a+x}]$
So
$\int \frac {1}{a^2 – x^2} dx $
$=\frac {1}{2a}[ \int \frac {1}{a-x} dx + \int \frac {1}{x+a}]$
$= \frac {1}{2a}[-ln |a-x| + ln |a+x| + C$
$=\frac {1}{2a} ln |\frac {a+x}{a-x}| + C$

Therefore

$$
=\frac {1}{\sqrt{2}} \left( \log(t – 1 + \sqrt{2}) – \log(t – \sqrt{2} – 1) \right) + C
$$

where $ t = \tan\left(\frac{x}{2}\right) $ and $ C $ is the constant of integration.

To express this in terms of $ x $, we substitute back $ t = \tan\left(\frac{x}{2}\right) $, resulting in the final solution:

$$
=\frac {1}{\sqrt{2}} \log |\frac {\left(\tan\left(\frac{x}{2}\right) – 1 + \sqrt{2}\right)}{\left(\tan\left(\frac{x}{2}\right) – \sqrt{2} – 1\right)}| + C
$$

Method 2

$\int \frac {1}{sinx + cos x} \; dx = \int \frac {1}{ \sqrt 2 sin (x + \frac {\pi}{4})} \; dx$
$=\frac {1}{\sqrt{2}} \int \csc (x + \frac {\pi}{4}) \; dx$

Now
\[
\int \csc(x) \, dx = \ln | \tan \frac {x}{2} | + C
\]

Therefore, original integral becomes

$=\frac {1}{\sqrt{2}} \ln |\tan ( \frac {x}{2} + \frac {\pi}{8}) | + C$

Proof of integration of 1/sinx- cosx

The integral can be tricky due to the combination of sine and cosine functions in the denominator. A common approach is to use a tangent half-angle substitution, which simplifies the integration of trigonometric functions that involve both sine and cosine.

Method 1

The tangent half-angle substitution is $ t = \tan\left(\frac{x}{2}\right) $. This substitution leads to the identities:

$$
\sin x = \frac{2t}{1 + t^2}, \quad \cos x = \frac{1 – t^2}{1 + t^2}, \quad dx = \frac{2}{1 + t^2} dt
$$

Substituting these into the integral, we get:

$$
\int \frac{1}{\sin x – \cos x} dx = \int \frac{1}{\frac{2t}{1 + t^2} – \frac{1 – t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt
$$

$$
=\int \frac {2}{2t – 1 + t^2} \; dt
$$

$$
=\int \frac {2} {(t^2 + 1 -2t) – 2} \; dt
$$

$$
=\int \frac{2} {(t+1)^2 – (\sqrt 2)^2} \; dt
$$

$\int \frac {1}{x^2 – a^2} dx = \frac {1}{2a} ln |\frac {x-a}{x+a}| + C$
Proof
$\frac {1}{x^2 – a^2} =\frac {1}{2a}[ \frac {1}{x-a} – \frac {1}{x+a}]$
So
$\int \frac {1}{x^2 – a^2} dx $
$=\frac {1}{2a}[ \int \frac {1}{x-a} dx – \int \frac {1}{x+a}]$
$= \frac {1}{2a}[ln |x-a| – ln |x+a| + C$
$=\frac {1}{2a} ln |\frac {x-a}{x+a}| + C$

Therefore

$$
=\frac {1}{\sqrt 2} ln |\frac {t+1- \sqrt 2}{t + 2+ \sqrt 2}| + C
$$

To express this in terms of $ x $, we substitute back $ t = \tan\left(\frac{x}{2}\right) $, resulting in the final solution:

$$
=\frac {1}{\sqrt 2} ln |\frac {\tan\left(\frac{x}{2}\right) +1- \sqrt 2}{\tan\left(\frac{x}{2}\right) + 2+ \sqrt 2}| + C
$$

Method 2

$\int \frac {1}{sinx – cos x} \; dx = \int \frac {1}{ \sqrt 2 sin (x – \frac {\pi}{4})} \; dx$
$=\frac {1}{\sqrt{2}} \int \csc (x – \frac {\pi}{4}) \; dx$

Now
\[
\int \csc(x) \, dx = \ln | \tan \frac {x}{2} | + C
\]

Therefore, original integral becomes

$=\frac {1}{\sqrt{2}} \ln |\tan ( \frac {x}{2} – \frac {\pi}{8}) | + C$

Proof of integration of 1/sinx cosx

Method 1

$\int \frac {1}{sin x cos x} \; dx = \int \frac {2}{ sin 2x} \; dx $
$= 2 \int \csc 2x \; dx$

Now
\[
\int \csc(x) \, dx = \ln | \tan \frac {x}{2} | + C
\]

Therefore, original integral becomes

$= \ln |tan x| + C $

Method 2

We also know that

\[
\int \csc(x) \, dx = \frac {1}{2} \ln | \frac {\cos x -1}{\cos x + 1} | + C
\]

Therefore, original integral becomes

$= \ln |\frac {(\cos(2x) – 1)}{ (\cos(2x) + 1)}| + C $

I hope you find this article on integration of 1 sinx cosx useful and interesting. Please do provide the feedback



Join PhysicsCatalyst WhatsApp Channel


Subscribe
Notify of

This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x