Integration of cos square x can be calculated using trigonometric identities .Here is the formula for it
$$ \int \cos^2(x) \, dx = \frac{1}{2} x + \frac{1}{4} \sin(2x) + C $$
Proof of Integration of cos square x
To integrate $ \cos^2(x) $, we use a trigonometric identity to simplify the expression before integrating. The identity commonly used is the power-reduction formula or double angle identity
$$ \cos^2(x) = \frac{1 + \cos(2x)}{2} $$
Now, let’s integrate using this identity:
$$ \int \cos^2(x) \, dx = \int \frac{1 + \cos(2x)}{2} \, dx $$
This integral can be split into two simpler integrals:
$$ = \frac{1}{2} \int dx + \frac{1}{2} \int \cos(2x) \, dx $$
Now, integrate each part:
- The integral of 1 with respect to $ x $ is $ x $.
- The integral of $ \cos(2x) $ is $ \frac{\sin(2x)}{2} $.
Proof of this Integral $\int \cos(2x) dx= \frac{\sin(2x)}{2}$
Let t=2x
dt=2 dx
or
dx= dt/2
Therefore
$\int \cos(2x) \; dx== \frac {1}{2} \int cos t \; dt= \frac{\sin(2x)}{2} $
So, the integral becomes:
$$ = \frac{1}{2} x + \frac{1}{4} \sin(2x) + C $$
where $ C $ is the constant of integration. Therefore, the integral of $ \cos^2(x) $ is:
$$ \int \cos^2(x) \, dx = \frac{1}{2} x + \frac{1}{4} \sin(2x) + C $$
Definite Integral of cos square x
To find the definite integral of $ \cos^2(x) $ over a specific interval, we use the same approach as with the indefinite integral, but we’ll apply the limits of integration at the end.
So, the definite integral of $ \cos^2(x) $ from ( a ) to ( b ) is:
\[ \int_a^b \cos^2(x) \, dx = \frac{1}{2} (b – a) + \frac{1}{4} (\sin(2b) – \sin(2a)) \]
Example
$$ \int_0^\pi \cos^2(x) \, dx $$
First, we use the power-reduction formula:
$$ \cos^2(x) = \frac{1 + \cos(2x)}{2} $$
Now, integrate over the interval $ [0, \pi] $:
$$ \int_0^\pi \frac{1 + \cos(2x)}{2} \, dx $$
$$ = \frac{1}{2} \int_0^\pi dx + \frac{1}{2} \int_0^\pi \cos(2x) \, dx $$
$$= \frac{1}{2} x \Big|_0^\pi + \frac{1}{4} \sin(2x) \Big|_0^\pi $$
$$=\frac{\pi}{2} + 0=\frac{\pi}{2}$ $
Therefore, the definite integral of $ \cos^2(x) $ from $ 0 $ to $ \pi $ is $ \frac{\pi}{2} $. This result represents the area under the curve of $ \cos^2(x) $ between $ x = 0 $ and $ x = \pi $.
Other Integration Related Articles