- Force of Friction
- |
- Static Friction
- |
- Kinetic Friction
- |
- Rolling Friction
- |
- Methods to Reduce Friction
- |
- Angle of Friction
- |
- Force of Friction examples problem with solutions

- Force of Friction
- |
- Static Friction
- |
- Kinetic Friction
- |
- Rolling Friction
- |
- Methods to Reduce Friction
- |
- Angle of Friction
- |
- Force of Friction examples problem with solutions

A body of Mass m moves along the X-axis such that a time t its position is given by following expression x=at

a) Calculate the acceleration of the body

b) What is the force acting on it

c) What is the force at t=1 sec

d) What are the dimension of a

An 8 Kg object is subjected to three forces

a) Find the acceleration of the object.

b) If the object starts from rest from origin, what will be the location after 4 sec

c) What is the magnitude of resultant force and its direction?

d) What fourth force

Consider a three body system shown in figure below

1) Find the acceleration of the each object

2) Find the contact force between all the objects

Three Block of mass m

All the surfaces are frictionless and strings and pulley are light. Find the acceleration of all the masses

A small block of mass m

The coefficient of friction between the two block is µ=.3

And the horizontal surface is smooth.A constant Force F is applied on the block

Find out the following

a) Find the value of limiting friction between the two blocks

b) What is the maximum acceleration by which the upper block can move

c) What is the maximum value of F at which both the block move together

d) if F=20 N,what is the acceleration of each block and what frictional force is acting between the block

e) What is the normal contact force between the blocks

f) what is the normal contact force between the larger block and the smooth surface

g) if F=40 N,what is the acceleration of each block and what frictional force is acting between the block

h) If the force is applied to the upper block,what will be the minimum force required so that there is relative motion between the block

Given g=10 m/sec

A object of mass M is standing in a stationary lift. What pressure force N exerted by the object on the floor of the lift

a)If the lift is stationary

b) if the lift is moving upward with acceleration a

c) if the lift is moving downward with acceleration a

d) if the lift is falling freely

e) if the lift is moving upward with constant velocity

f) if the lift is moving downward with constant velocity

A piece of uniform strings hangs vertically so that its free end just touches the horizontal surface of the .The upper end of the strings is now released. Show that at any instant during the falling of string, the total force on the surface of the table is three times the weight of the part of the string lying on the surface

Three blocks A, B,C are such as

M

They are connected as shown in the below figure.

The coefficient of friction between the block M

Find out the following

a) Draw all the forces acting on the system

b) The acceleration of the system

c) Frictional force between the block M

d) Tension in the cord on the left and tension in the cord on the right

Given g=10 m/sec

The pulley are light and friction less

A boxcar is moving such that Initial velocity v=0

And Acceleration= (4 m/sec

Find out following

a) If the object A slid along the frictionless floor with the velocity v= (10m/s)

b) The object B slid along the rough floor with the velocity v= (10m/s)

Class 11 Maths Class 11 Physics Class 11 Chemistry

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using feedback button or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.