Home » Maths » Definite integration formulas

Definite integration formulas

Definite integration involves finding the integral of a function over a specific interval. This process yields a number that represents the net area under the curve of the function between the two endpoints of the interval. Here are some fundamental formulas and properties related to definite integrals:

Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus links the concept of differentiation with integration and consists of two parts:


Join PhysicsCatalyst WhatsApp Channel


  1. First Part: If ( f ) is continuous on ([a, b]) and ( F ) is an antiderivative of ( f ) on ([a, b]), then:
    \[
    \int_a^b f(x) \, dx = F(b) – F(a)
    \]
  2. Second Part: If ( f ) is a continuous function on ([a, b]), then the function ( g ) defined by:
    \[
    g(x) = \int_a^x f(t) \, dt
    \]
    is continuous on ([a, b]), differentiable on ((a, b)), and ( g'(x) = f(x) ).

Properties of Definite Integrals

(I) $\int_{a}^{b} f(x) dx= \int_{a}^{b} f(t) dt $

(II) $\int_{a}^{b} f(x) dx=- \int_{b}^{a} f(x) dx $


Join PhysicsCatalyst WhatsApp Channel


(III) $\int_{a}^{b} f(x) dx= \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx  $

where a<c <b

(IV) $\int_{a}^{b} f(x) dx=\int_{a}^{b} f((a+b-x)) dx$

(V) $\int_{0}^{a} f(x) dx=\int_{0}^{a} f((a-x)) dx$

(VI) $\int_{0}^{2a} f(x) dx=\int_{0}^{a} f((x)) dx + \int_{0}^{a} f((2a-x)) dx$

(VII) $\int_{0}^{2a} f(x) dx= \begin{cases}
2 \int_{0}^{a} f(x) dx & ,  f(2a-x) =f(x) \\
0 &, f(2a-x) =-f(x)
\end{cases} $

(VIII) $\int_{-a}^{a} f(x) dx= \begin{cases}
2 \int_{0}^{a} f(x) dx & ,  f(x) =f(-x) \\
0 &, f(x) =-f(x)
\end{cases} $

(IX) $f(x) \geq 0$, then $\int_{a}^{b} f(x) dx \geq 0$

(X) $f(x) \geq g(x) $, then $\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx $

(IX) $|\int_{a}^{b} f(x) dx| \leq \int_{a}^{b} |f(x)| dx$

Other formula’s

For any real number $n \neq -1$,
$$
\int_{a}^{b} x^n \, dx = \frac{b^{n+1} – a^{n+1}}{n+1}
$$

$$
\int_{a}^{b} e^x \, dx = e^b – e^a
$$

$$
\int_{1}^{b} \frac{1}{x} \, dx = \ln(b)
$$

$$
\int_{a}^{b} \sin(x) \, dx = -\cos(b) + \cos(a)
$$
$$
\int_{a}^{b} \cos(x) \, dx = \sin(b) – \sin(a)
$$
$$
\int_{a}^{b} \tan(x) \, dx = -\ln|\cos(b)| + \ln|\cos(a)|
$$

A special case using polar coordinates:
$$
\int_{0}^{2\pi} \frac{1}{2} r^2 \, d\theta = \pi r^2
$$

$$
\int_{a}^{\infty} \frac{1}{a^2 + x^2} \, dx = \frac {\pi}{2a}
$$

$$
\int_{a}^{\infty} \frac{1}{\sqrt {a^2 – x^2}} \, dx = \frac {\pi}{2}
$$

$$
\int_{a}^{\infty} \sqrt {a^2 – x^2} \, dx = \frac {\pi a^2}{4}
$$

Example

Calculate the definite integral of ( f(x) = x^3 ) from ( x = 1 ) to ( x = 2 ):

\[
\int_1^2 x^3 \, dx = \left[ \frac{x^4}{4} \right]_1^2 = \frac{2^4}{4} – \frac{1^4}{4} = \frac{16}{4} – \frac{1}{4} = 4 – 0.25 = 3.75
\]

We hope that these Definite integration formulas will help in your preparation.


Join PhysicsCatalyst WhatsApp Channel


Subscribe
Notify of

This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x