Here in this post ,we will check out how to draw the graph of sin inverse sin x i.e
f(x)=sin−1sin(x)
We know by definition
f(x)=sin−1sin(x)=x if x∈[−π/2,π/2]
Lets check out the other values
if x∈(π/2,3π/2]
π/2<x≤3π/2
−3π/2≤−x<−π/2
\pi – 3\pi/2 \leq \pi -x < \pi – \pi/2
-\pi/2 \leq \pi -x < \pi/2
Now Sin(\pi -x) =sinx
So f(x) = sin^{-1} sin (x) = sin^{-1} sin (\pi -x)= \pi -x
if x \in (3\pi/2, 2\pi]
3\pi/2 < x \leq 2\pi
3\pi/2 -2 \pi < x- 2 \pi < 0
-\pi/2 < x- 2 \pi < 0
Now sin (2\pi -x) = -sin(x)
or sin(x) = sin (x -2 \pi)
So f(x) = sin^{-1} sin (x) = sin^{-1} sin (x -2 \pi)= x- 2\pi
Therefore the graph will be

Here f(x) is a periodic function with period 2 \pi, So same graph will be repeated for all the 2 \pi intervals