Processing math: 53%
Home » Maths » integration of 1/1+cosx , 1/1 -cos x

integration of 1/1+cosx , 1/1 -cos x

We can easily find the integration of 11+cosx and 11cosx using trigonometric identities and fundamental integration techniques, The formula of these integral is given as

11+cosxdx=tanx2+C

or

11+cosxdx=cotx+\csxx+C

11cosxdx==cotx2+C

or

11cosxdx=cotxcscx+C

Proof of integration of 1/1+cosx

Method I

11+cosxdx=12cos2x2

=12sec2x2dx

Now let x2=t

Then dx=2dt
Therefore

=22sec2tdt

=tant+C
Substituting back

=tanx2+C

Method II

11+cosxdx=11+cosx×1cosx1cosx

=1cosx1cos2xdx=1cosxsin2xdx

=\int ( \csc^2 x – \cot x \csc x) \; dx
= -\cot x + \csx x + C

Proof of integration of 1/1-cosx

Method I

\int \frac {1}{1- cos x} \; dx = \int \frac {1}{2\sin^2 \frac {x}{2} }

=\frac {1}{2} \int \csc^2 {x}{2} \; dx

Now let {x}{2} =t

Then dx= 2dt
Therefore

=\frac {2 }{2} \int \csc^2 t \; dt

=-\cot t + C
Substituting back

= -\cot {x}{2} + C

Method II

\int \frac {1}{1- cos x} \; dx = \int \frac {1}{1- cos x} \times \frac {1+ cos x}{1+ cos x}

= \int \frac {1+ cos x}{1- cos^2 x } \; dx = \int \frac {1+cos x}{\sin^2 x} \; dx

=\int ( \csc^2 x + \cot x \csc x) \; dx
= -\cot x – \csx x + C

Subscribe
Notify of


This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x