We can easily find the integration of 11+cosx and 11−cosx using trigonometric identities and fundamental integration techniques, The formula of these integral is given as
∫11+cosxdx=tanx2+C
or
∫11+cosxdx=−cotx+\csxx+C
∫11−cosxdx==−cotx2+C
or
∫11−cosxdx=−cotx−cscx+C
Proof of integration of 1/1+cosx
Method I
∫11+cosxdx=∫12cos2x2
=12∫sec2x2dx
Now let x2=t
Then dx=2dt
Therefore
=22∫sec2tdt
=tant+C
Substituting back
=tanx2+C
Method II
∫11+cosxdx=∫11+cosx×1−cosx1−cosx
=∫1−cosx1−cos2xdx=∫1−cosxsin2xdx
=\int ( \csc^2 x – \cot x \csc x) \; dx 
= -\cot x + \csx x + C
Proof of integration of 1/1-cosx
Method I
\int \frac {1}{1- cos x} \; dx = \int \frac {1}{2\sin^2 \frac {x}{2} }
=\frac {1}{2} \int \csc^2 {x}{2} \; dx
Now let {x}{2} =t
Then dx= 2dt
Therefore
=\frac {2 }{2} \int \csc^2 t \; dt
=-\cot t + C
Substituting back
= -\cot {x}{2} + C
Method II
\int \frac {1}{1- cos x} \; dx = \int \frac {1}{1- cos x} \times \frac {1+ cos x}{1+ cos x}
= \int \frac {1+ cos x}{1- cos^2 x } \; dx = \int \frac {1+cos x}{\sin^2 x} \; dx
=\int ( \csc^2 x + \cot x \csc x) \; dx 
= -\cot x – \csx x + C
Other Integration Related Articles