Complex Numbers
Complex numbers are the numbers of the form $a+ ib$ where $i= \sqrt {-1}$ and a and b are real numbers
Algebra for i
$i= \sqrt {-1}$
$i^2= -1$
$i^3 =i \times i^2= -i$
$i^4= i^2 \times i^2 = 1$
$i^{4n} =1$
$i^n + i^{n+1} + i^{n+2} + i^{n+3} =i^n( 1 + i +i^2 + i^3 ) = i^b(1 + i -1 -i)=0$
Addition of Complex Numbers
Let z1 = x1 + iy1 and z2 = x2 + iy2 z1 +z2 = (x1 + x2) + i(y1 + y2)
Subtraction of Complex Numbers
Let z1 = x1 + iy1 and z2 = x2 + iy2 z1 -z2 = (x1 – x2) + i(y1 – y2)
Multiplication of Complex numbers
Let z1 = x1 + iy1 and z2 = x2 + iy2
z1 z2 = (x1 + iy1 ) (x2 + iy2 ) =(x1x2 – y1y2) +i(x1y2 +x2y1)
Multiplicative Inverse
Let z= a+ ib , Then Multiplicative inverse is given as
$\frac {1}{z}=z^{-1} = \frac {1}{a+ ib} = \frac {a}{a^2 + b^2} – \frac {ib}{a^2 + b^2}$
Division of Complex Numbers
Let z1 = x1 + iy1 and z2 = x2 + iy2
z1 /z2 = (x1 + iy1 ) /(x2 + iy2 ) =z1 z2-1
Conjugate of Complex Number
If z= x+iy then Conjugate is given by $\bar{z} = x-iy$
Properties of Conjugate of Complex Number
If z= x + iy
- $\bar {\left( \bar{z} \right)}= z$
- $ z + \bar{z} = 2 Re(z) = 2x$
- $ z – \bar{z} = 2 Im(z) = 2iy$
- If $ z + \bar{z} = =0$, then $z=-\bar{z} $ and z is purely Imaginary
- $\overline {z_1 + z_2} = \bar{z_1} + \bar{z_2}$
- $\overline {z_1 – z_2} = \bar{z_1} – \bar{z_2}$
- $\overline {z_1 z_2} = \bar{z_1} \bar{z_2}$
- $\overline {z^n} = \left( \bar{z} \right)^n$
Modulus of complex Number
If z= z + iy, then modulus is defined
$|z| = \sqrt {x^2 + y^2}$
Properties of Modulus of complex Number
- $|z| \geq 0$
- If |z| = 0 , then z=0
- |z| > 0, then $z \ne 0$
- $ -|z| \leq Re(z) \leq |z|$
- $ -|z| \leq Img(z) \leq |z|$
- $z \bar{z} =|z|^2$
- $|z|=|-z|$
- $|z_1 z_2| = |z_1||z_2|$
- $|\frac {z_1}{z_2}| = \frac {|z_1|}{|z_2|}$
- $|z_1 + z_2| \leq |z_1| + |z_2|$
- $|z_1 + z_2| \geq ||z_1| – |z_2||$
- $ ||z_1| – |z_2|| \leq |z_1 + z_2| \leq |z_1| + |z_2|$
- $|z_1 – z_2| \leq |z_1| – |z_2|$
- $|z^n| = |z|^n$
- $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + (z_1 \bar{z_2} + z_2 \bar{z_1})$
- $|z_1 – z_2|^2 = |z_1|^2 + |z_2|^2 – (z_1 \bar{z_2} + z_2 \bar{z_1})$
- $|z_1 + z_2|^2 + |z_1 – z_2|^2 =2 |z_1|^2 +2 |z_2|^2$
- $|az_1 +b z_2|^2 + |bz_1 -a z_2|^2 =(a^2 + b^2)( |z_1|^2 + |z_2|^2)$
Argand Diagram
Complex number $z=a +ib$ can be represented by a point P (a, b) on a x-y plane. The x -axis represent the real part while the y-axis represent the imaginary part
Important points
(1) The length OP is called the module of z and is denoted by $|z| =\sqrt {x^2 + y^2}$
(2) Purely real number lies on X-axis while purely imaginary number lies on y-axis
(3) The Line OP makes an angle $\theta$ with the positive direction of x-axis in anti-clockwise sense is called the argument or amplitude of z
It is given by
$arg (z) = \tan^{-1} \frac {y}{x}$
The unique value of $\theta$ such that $-\pi < \theta \leq \pi$ is called the principal value of the amplitude or principal argument
(4) The principal argument of the complex number is find using the below steps
Step 1) for z=a+ib , find the acute angle value of $\theta =tan^{-1} \frac {|y|}{|x|}$
Step 2) Look for the values of a ,b
if (a, b) lies in First quadrant then Argument=$\theta$
if (a, b) lies in second quadrant then Argument =$\pi -\theta$
if (a, b) lies in third quadrant then Argument =$-\pi + \theta$
if (a, b) lies in Fourth quadrant then Argument =$-\theta$
Properties of Argument of Complex Numbers
- $arg (z_1z_2)= arg(z_1) + arg (z_2) + 2k \pi$
- $arg (\frac {z_1}{z_2})= arg(z_1) – arg (z_2) + 2k \pi$
- $arg (\frac {z}{\bar{z}})= 2 arg(z) + 2k \pi$
- $arg (\bar{z})= – arg(z) $
- $arg (z^n)= n arg(z) + 2k\pi $
Where k is a integer such that Arg lies between $-\pi$ and $\pi$
Polar Representation
$z= |z| (cos (arg) + i sin(arg)$
Here arg is the principal argument of the complex number
we can write this as
$z= r(cos \theta + \sin \theta)$
where r =|z| and $\theta$ is the principle argument
Euler form
For any real number x, eix = cos x + i sin x
Let z be a non zero complex number; we can write z in the polar form as,
$z = r(cos \theta + i sin \theta ) = re^{i \theta}$, where r is the modulus and $\theta$ is argument of z.
Important point
(1) Multiplying a complex number z with $e^{i \alpha}$ gives
$z \times e^{i \alpha} = r e^{i \theta} \times e^{i \alpha} = r e^{i(\alpha + \theta)}$
(2) $e^{i \theta} + e^{-i \theta} = 2 \cos \theta$
(3) $e^{i \theta} – e^{-i \theta} = 2 i\sin \theta$
(4) $e^{i \theta} + e^{-i \alpha} = e^{i (\theta + \alpha)/2} 2 \cos (\theta – \alpha)/2$
(5) $e^{i \theta} + 1 = e^{i \theta /2} 2 \cos \theta /2$
(6) $e^{i \theta} – e^{-i \alpha} = e^{i (\theta – \alpha)/2} 2 i\sin (\theta – \alpha)/2$
(7)$e^{i \theta} – 1 = e^{i \theta /2} i 2 \sin \theta /2$
Logarithm of the Complex Number
$log _{e} z = log _ {e} |z| e^{i\theta} = log_{e} |z| + i \theta$
General Form
$log _{e} z = log_{e} z + 2n \pi i $
De Moivre’s theorem
De Moivre’s theorem states following cases
- Case I It states that for any integer n,
$(cos \theta + i sin \theta)^n = cos (n \theta) + i sin (n\theta)$ - Case II if n is of the form p/q where p, q are integers and q > 0
then
$(cos \theta + i sin \theta)^n =cos (2k \pi+ \theta)p/q + sin (2k \pi+ \theta)p/q$
Where k=0,1,2,…q-1
Important points
$(cos \theta _1 + i sin \theta_1) (cos \theta _2 + i sin \theta_2) (cos \theta _3 + i sin \theta_3) =cos (\theta _1 + \theta _2 + \theta _3) + i sin (\theta _1 + \theta _2 + \theta _3)$
$(cos \theta – i sin \theta)^n = \cos n \theta – i \sin n\theta$
$(sin \theta + i cos \theta)^n = (-1)^n (\cos n \theta – i \sin n\theta )$
$(sin \theta – i cos \theta)^n = (-1)^n (\cos n \theta + i \sin n\theta)$
$\frac {1}{cos \theta + i sin \theta} = cos \theta – i sin \theta $
How to find the roots of the equation
$(a+ ib)^{p/q}$ where p and q are integers and $q \ne 0$
$(a + ib) = r (\cos \theta + i \sin \theta)$
then $(a+ ib)^{p/q} = r^{p/q} ( \cos \theta + i \sin \theta)^{p/q}$
$=r^{p/q}(\cos \frac {(2k \pi+ \theta)p}{q} + \sin \frac {(2k \pi+ \theta)p}{q} )$
Where k=0,1,2,…q-1
Cube Root of Unity
$z^3 -1=0$
$(z-1)(z^2 + z +1)=0$
$z = 1, \frac {-1 \pm i \sqrt 3}{2}$
We define them as
$\omega = \frac {-1 + i \sqrt 3}{2}$
$\omega ^2 = \frac {-1 – i \sqrt 3}{2}$
Important points
- $1 + \omega + \omega ^2 =0$
- $\omega ^3 =1$
- $\omega ^4 = \omega$
- $\omega ^{3n +1} = \omega$
- $\omega ^{3n +2} = \omega ^2$
- $a^2 + ab + b^2 = (a- b \omega)(a – b\omega ^2)$
- $a^2 – ab + b^2 = (a+ b \omega)(a + b\omega ^2)$
- $a^3 + b^3= (a+b) (a + b \omega) (a + b \omega ^2)$
- $a^3 – b^3= (a-b) (a – b \omega) (a – b \omega ^2)$
nth root of Unity
$z^n -1 =0$
$z^n =1$
$z = 1^{1/n} = (cos 2 k \pi + i \sin 2k \pi)^{1/n}$
$= cos \frac {2 k \pi}{n} + i sin \frac {2 k \pi}{n}$
where k=0,1,2,…n-1
If $\alpha = cos \frac {2 \pi}{n} + i sin \frac {2 \pi}{n}$
(A) Sum of the nth Roots of Unity
$1 + \alpha + \alpha ^2 + \alpha ^3 + ..+ \alpha ^{n-1} = \frac {1 (1 – \alpha ^n)}{1 – \alpha}$
Now as $\alpha ^n =1$, Hence
$1 + \alpha + \alpha ^2 + \alpha ^3 + ..+ \alpha ^{n-1} =0$
So sum of the roots are the nth root of unit is zero
(B) Product of the nth Roots of Unity
$1 \times \alpha \times \alpha ^2 \times \alpha ^3 \times ..\times \alpha ^{n-1} = \alpha^{ 1 + 2 +…(n-1)}=\alpha ^{n(n-1)/2}$
$= (-1)^{n-1}$
Cube root of Any Number
$x^3=a$ is given as
$a^{1/3} , a^{1/3} \omega , a^{1/3} \omega ^2$