Home » Maths » Inverse Trigonometric Function Formulas

Inverse Trigonometric Function Formulas


Inverse Trigonometric Function Formulas

Inverse Trigonometric Function Formulas


Inverse Trigonometric Functions are important topic in Trigonometry. Here is detailed list of Inverse Trigonometric Function Formulas

Domain and Range Of Inverse Trigonometric Functions

Inverse Trigonometric Function Formula


The value of an inverse trigonometric functions which lies in its principal value branch is called the principal value of that inverse trigonometric functions

Graph of Inverse Trigonometric Functions

sin inverse graph

$sin^{-1} x$

$cos^{-1} x$

cos inverse graph
tan inverse graph
cosec inverse graph
sec inverse graph


$tan^{-1} x$

$cosec^{-1} x$$ sec^{-1} x$

$cot^{-1} x$

More Formulas

$sin (sin^{-1} x) = x$ and $sin^{-1} (sin \theta) = \theta$, if $- \frac {\pi}{2} \leq \theta \leq \frac {\pi}{2}$ and $- 1 \leq x \leq 1$.
$cos (cos^{-1} x) = x$ and $cos^{-1} (cos \theta) = \theta $, if $0 \leq \theta \leq \pi$ and $- 1 \leq x \leq 1$
$tan (tan^{-1} x) = x$ and $tan^{-1} (tan \theta) = \theta $ if $- \frac {\pi}{2} \leq \theta \leq \frac {\pi}{2}$ and $ – \infty < x < \infty$.
$cosec (cosec^{-1} x) = x$ and $cosec^{-1} (cosec \theta) = \theta$ if $- \frac {\pi}{2} \leq \theta < 0$ , $ 0 < \theta \leq \frac {\pi}{2}$ and $- \infty < x \leq -1$ or $1 \leq x < \infty$ .
$sec (sec^{-1} x) = x$ and $sec^{-1} (sec \theta) = \theta$ if $0 \leq \theta < \frac {\pi}{2}$ or $\frac {\pi}{2} < \theta \leq \pi $ and $- \infty < x \leq -1$ or $1 \leq x < \infty$.
$cot (cot^{-1} x) = x$ and $cot^{-1} (cot \theta) = \theta$, if $0 < \theta < \pi$ and $ – \infty < x < \infty$

Inverse of Negative x

$sin^{-1} (-x) = -sin^{-1} (x)$
$cos^{-1} (-x) = \pi – cos^{-1} (x)$
$tan^{-1} (-x) = -tan^{-1} (x)$
$sec^{-1} (-x) = \pi – sec^{-1} (x)$
$cosec^{-1} (-x) = -cosec^{-1} (x)$
$cot^{-1} (-x) = \pi – cot^{-1} (x)$

Other Formulas

$sin^{-1} (\frac {1}{x}) = cosec^{-1} (x)$
$cos^{-1} (\frac {1}{x}) = sec^{-1} (x)$
$tan^{-1} (\frac {1}{x}) = cot^{-1} (x)$
$sin^{-1} (x) + cos^ {-1} (x) = \frac {\pi}{2}$
$sec^{-1} (x) + cosec^ {-1} (x) = \frac {\pi}{2}$
$tan^{-1} (x) + cot^ {-1} (x) = \frac {\pi}{2}$
$sin^{-1} (x) + sin^ {-1} (y) = sin ^{-1} (x \sqrt {1-y^2} + y \sqrt {1-x^2})$ if $x,y \geq 0 $, $x^2 + y^2 \leq 1$
$sin^{-1} (x) + sin^ {-1} (y) = \pi – sin ^{-1} (x \sqrt {1-y^2} + y \sqrt {1-x^2})$ if $x,y \geq 0 $, $x^2 + y^2 > 1$
$sin^{-1} (x) – sin^ {-1} (y) = sin ^{-1} (x \sqrt {1-y^2} – y \sqrt {1-x^2)}$ if $x,y \geq 0 $, $x^2 + y^2 \leq 1$
$sin^{-1} (x) – sin^ {-1} (y) = \pi – sin ^{-1} (x \sqrt {1-y^2} – y \sqrt {1-x^2})$ if $x,y \geq 0 $, $x^2 + y^2 > 1$
$cos^{-1} (x) + cos^ {-1} (y) = cos ^{-1} (x y – \sqrt {1-y^2} \sqrt {1-x^2})$ if $x,y \geq 0 $, $x^2 + y^2 \leq 1$
$cos^{-1} (x) + cos^ {-1} (y) = \pi – cos ^{-1} ((x y – \sqrt {1-y^2} \sqrt {1-x^2})$ if $x,y \geq 0 $, $x^2 + y^2 > 1$
$cos^{-1} (x) – cos^ {-1} (y) = cos ^{-1} (x y + \sqrt {1-y^2} \sqrt {1-x^2})$ if $x,y \geq 0 $, $x^2 + y^2 \leq 1$
$cos^{-1} (x) – cos^ {-1} (y) = \pi – cos ^{-1} (x y + \sqrt {1-y^2} \sqrt {1-x^2})$ if $x,y \geq 0 $, $x^2 + y^2 > 1$
$tan^{-1} (x) + tan^ {-1} (y)= tan^{-1} (\frac {x+y}{1-xy})$ , if $x,y > 0 $, $xy < 1$
$tan^{-1} (x) + tan^ {-1} (y)= \pi + tan^{-1} (\frac {x+y}{1-xy})$ , if $x,y > 0 $, $xy > 1$
$tan^{-1} (x) + tan^ {-1} (y)= tan^{-1} (\frac {x+y}{1-xy}) – \pi$ , if $x < 0, y > 0 $, $xy > 1$
$tan^{-1} (x) – tan^ {-1} (y)= tan^{-1} (\frac {x-y}{1+xy}) – \pi$ , if $xy > -1$
$tan^{-1} (x) + tan^ {-1} (y) + tan^ {-1} (z) = tan^{-1} (\frac {x+y+z – xyz}{1-xy-yz-xz})$
$ 2 sin^{-1} (x) = sin^{-1} (2x \sqrt {1-x^2})$ if $ -\frac {1}{\sqrt {2}} \leq x \frac {1}{\sqrt {2}} $
$ 2 cos^{-1} (x) = cos^{-1} (2x^2 -1)$
$2 tan^{-1} (x) = tan^{-1} (\frac {2x}{1-x^2})$ if $ -1 <x < 1$
$2 tan^{-1} (x) = sin^{-1} (\frac {2x}{1+x^2})$ if $ |x| \leq 1$
$2 tan^{-1} (x) = cos^{-1} (\frac {1 -x^2}{1+x^2})$ if $ x \geq 0$
$3 sin^{-1} (x) = sin^{-1} (3x -4x^3)$
$3 cos^{-1} (x) = cos^{-1} (4x^3 – 3x)$
$3 tan^{-1} (x) = tan^{-1} (\frac {3x -x^3}{1-3x^2})$


Related Articles

Trigonometry Formulas for class 11 (PDF download)
sin cos tan table
Integration Formulas
sin 18 degrees
tan 15 degrees
Differentiation formulas
https://en.wikipedia.org/wiki/Differentiation


Subscribe
Notify of

This site uses Akismet to reduce spam. Learn how your comment data is processed.

1 Comment
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
2 years ago

This article is amazing. You cover all the formulas which helps me to solve the equations in lesser time. You can also do that by using the trigonomatry graphing calculator.

1
0
Would love your thoughts, please comment.x
()
x