Prove the Following using Principle of Mathematical induction
1. $2 + 4 + 6 + ... + 2n = n^2 + n$ for all natural numbers n.
2. $1 + 3 + 3^2+ ... + 3^n= \frac {1}{2}(3^{n+1} – 1) for all natural numbers n.
3. $2n + 1 < 2^n$ , for all natual numbers n = 3.
4. n(n+1)(n+5) is divisible by 6 for all natural numbers n.
5. $1.2.3+ 2.3.4 + 3.4.5 +.....+ n(n+1)(n+2) = \frac {n(n+1)(n+2)(n+3)}{4}$
6. $sin \theta + sin 3\theta+ .....+ sin(2n-1) \theta = \frac {sin^2 n \theta}{sin \theta} $ for all natural numbers n.
7. $ 10^{2n-1} + 1$ is divisible by 11 for all natural numbers n.
8. $ 1 + 2 + ... + n = \frac {n(n+1)}{2}$ for all natural numbers n.
9. $n^2 - 3n + 4$ is even and it is true for all positive integers.
10. $\frac {1}{1 \times 2} + \frac {1}{2 \times 3 } + \frac {1}{3 \times 4 } +... + \frac {1}{n(n+1) } = \frac {n}{n+1}$ for all natural numbers n.
Related Topics
link to this page by copying the following text
Go back to Class 11 Main Page using below links
Class 11 Maths
Class 11 Physics
Class 11 Chemistry
Class 11 Biology