physicscatalyst.com logo




Mathematical Inductions Problems





Prove the Following using Principle of Mathematical induction
1. $2 + 4 + 6 + ... + 2n = n^2 + n$ for all natural numbers n.
2. $1 + 3 + 3^2+ ... + 3^n= \frac {1}{2}(3^{n+1} � 1) for all natural numbers n.
3. $2n + 1 < 2^n$ , for all natual numbers n = 3.
4. n(n+1)(n+5) is divisible by 6 for all natural numbers n.
5. $1.2.3+ 2.3.4 + 3.4.5 +.....+ n(n+1)(n+2) = \frac {n(n+1)(n+2)(n+3)}{4}$



6. $sin \theta + sin 3\theta+ .....+ sin(2n-1) \theta = \frac {sin^2 n \theta}{sin \theta} $ for all natural numbers n.
7. $ 10^{2n-1} + 1$ is divisible by 11 for all natural numbers n.
8. $ 1 + 2 + ... + n = \frac {n(n+1)}{2}$ for all natural numbers n.
9. $n^2 - 3n + 4$ is even and it is true for all positive integers.
10. $\frac {1}{1 \times 2} + \frac {1}{2 \times 3 } + \frac {1}{3 \times 4 } +... + \frac {1}{n(n+1) } = \frac {n}{n+1}$ for all natural numbers n.

Related Topics






Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ