- Flash Back from Class IX notes
- |
- Distance formula
- |
- Section Formula
- |
- Area of triangle
- |
- How to Solve the line segment bisection ,trisection and four-section problem's
- |
- How to Prove three points are collinear
- |
- How to solve general Problems of Area in Coordinate geometry

- Coordinate Geometry Problem and Solutions
- |
- Coordinate Geometry Short questions
- |
- Coordinate Geometry 3 Marks Questions
- |
- Coordinate Geometry 5 Marks questions

Given below are the

a) Concepts questions

b) Calculation problems

c) Multiple choice questions

d) Long answer questions

e) Fill in the blank's

Calculate the Following

- Distance between the point (1,3) and ( 2,4)
- Mid-point of line segment AB where A(2,5) and B( -5,5)
- Area of the triangle formed by joining the line segments (0,0) ,( 2,0) and (3,0)
- Distance of point (5,0) from Origin
- Distance of point (5,-5) from Origin
- Coordinate of the point M which divided the line segment A(2,3) and B( 5,6) in the ratio 2:3
- Quadrant of the Mid-point of the line segment A(2,3) and B( 5,6)
- the coordinates of a point A, where AB is the diameter of circle whose center is (2,−3) and B is (1, 4)

a) $D=\sqrt{(1-2)^{2}+(3-4)^{2}}=\sqrt{2}$

b) Mid-point is given by (2-5)/2,(5+5)/2 or (-3/2, 5)

c) $A=\frac{1}{2}[0(0-0)+2(0-0)+3(0-0)]=0$

Since the three points are collinear, the area is zero

d) $D=\sqrt{5^{2}+0^{2}}=5$

e)$D=\sqrt{(-5)^{2}+0^{2}}=5$

f) Coordinates of point M is given by

$x=\frac{2X3+3X2}{2+3}=\frac{12}{5}$

$y=\frac{2X6+3X5}{2+3}=\frac{27}{5}$

g) Mid point is given by (7/2, 9/2) which lies in First quadrant

h) We know that center is mid point of AB, So

$2=\frac{1+x}{2}$

$-3=\frac{4+y}{2}$

Solving these, we get (3,-10)

a) Point A( 0,0) B( 0,3) ,C( 0,7) and D( 2,0) formed a quadrilateral

b) The point P (–2, 4) lies on a circle of radius 6 and center C (3, 5)

c) Triangle PQR with vertices P (–2, 0), Q (2, 0) and R (0, 2) is similar to Δ XYZ with

Vertices X (–4, 0) Y (4, 0) and Z (0, 4).

d) Point X (2, 2) Y (0, 0) and Z (3, 0) are not collinear

e) The triangle formed by joining the point A( -3,0) , B( 0,0) and C( 0,2) is a right angle triangle

f) A circle has its center at the origin and a point A (5, 0) lies on it. The point B (6, 8) lies inside the circle

g) The points A (–1, –2), B (4, 3), C (2, 5) and D (–3, 0) in that order form a rectangle

- False, As three point are A,B and C are collinear, So no quadrilateral can be formed
- False, As the distance between the point P and C is $\sqrt{26}$ which is less than 6.So point lies inside the circle
- True. Both the triangle are equilateral triangle with side 4 and 8 respectively
- True. As the Area formed by the triangle XYZ is not zero
- True, If we plot the point on the Coordinate system, it becomes clear that it is right angle at origin
- False. The radius of the circle is 5 and distance of the point B is more than 5,So it lies outside the circle
- True. If we calculate the distance between two points, it becomes clear that opposite side are equal, also the diagonal are equal. So it is a rectangle

Find the centroid of the triangle XYZ whose vertices are X (3, - 5) Y (- 3, 4) and Z (9, - 2).

a) (0, 0)

b) (3, 1)

c) (2, 3)

d) (3,-1)

Centroid of the triangle is given by

$x=\frac{x_{1}+x_{2}+x_{3}}{3}=\frac{3-3+9}{3}=3$

$y=\frac{y_{1}+y_{2}+y_{3}}{3}=\frac{-5+4-2}{3}=-1

$

The area of the triangle ABC with coordinates as A (1, 2) B (2, 5) and C (- 2, - 5)

a) -1

b) .4

c) 2

d) 1

$A=\frac{1}{2}[1(5+5)+2(-5-2)-2(2-5)]=1$

Find the value of p for which these point are collinear (7,-2) , (5,1) ,(3,p)?

a) 2

b) 4

c) 3

d) None of these

For these points to be collinear

A=0

Or

$\frac{1}{2}[7(1-p)+5(p+2)+3(-2-1)]=0$

7-7p+5p+10-9=0

P=2

Determine the ratio in which the line 2x + y – 4 = 0 divides the line segment joining the points A (2, – 2) and B (3, 7).

a) 2:9

b) 1:9

c)1:2

d) 2:3

Let the ratio be m: n

Now

Coordinate of the intersection

$x=\frac{3m+3n}{m+n}$

$y=\frac{7m-2n}{m+n}$

Now these points should lie of the line, So

$2(\frac{3m+2n}{m+n})+(\frac{7m-n}{m+n})-4=0$

- m:n=2:9

If the mid-point of the line segment joining the points A (3, 4) and

B (a, 4) is P (x, y) and x + y – 20 = 0,then find the value of a

a) 0

b) 1

c) 40

d) 45

id point (3+a)/2, 4

Now

(3+a)/2 -4 -20=0

3+a=48

A=45

Given below are the links of some of the reference books for class 10 math.

- Oswaal CBSE Question Bank Class 10 Hindi B, English Communication Science, Social Science & Maths (Set of 5 Books)
- Mathematics for Class 10 by R D Sharma
- Pearson IIT Foundation Maths Class 10
- Secondary School Mathematics for Class 10
- Xam Idea Complete Course Mathematics Class 10

You can use above books for extra knowledge and practicing different questions.

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using comment box given below or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.