If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
A=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
A=12[a(c+a−a−b)+b(a+b−b−c)+c(b+c−c−a)]=0$
If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
A=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
0=12[x(1−5)+2(5+1)+4(−1−1)]
0=−4x+12−8
x=2
If the point are collinear, then Area will be zero
A=12[4(6−3)+7(3−5)+6(5−6)]=−8
So they are not collinear
If the point are collinear, then Area must be zero
0=12[7(1−q)+5(q+2)+3(−2−1)]
q=4
Let the point of Y-axis is (0,y)
Then
√(0−6)2+(y−5)2=√(0+4)2+(y−3)2
Squaring both the sides
(0−6)2+(y−5)2=(0+4)2+(y−3)2
36+y2+25-10y=16+y2+9-6y
4y=36
y=9
So point (0,9)
Let the point be A(p,p) ,B(-p,-p) and C(-p√3, p√3)
Then
AB=√(−p−p)2+(−p−p)2=2p√2
BC=√(−p√3+p)2+(p√3+p)2=2p√2
AC=√(−p√3−p)2+(p√3−p)2=2p√2
All Sides equal,It is an equilateral triangle
Area of triangle
=(side)2√34
=2 √3p2 sq. units
Let the point be A(0,-1) ,B(6,7) , C(-2, 3) and D(8,3)3)
Then
AB=√(0−6)2+(−1−7)2=10
BC=√(6+2)2+(7−3)2=2√20
CD=√(−2−8)2+(3−3)2=10
AD=√(0−8)2+(3+1)2=2√20
AC=√(0+2)2+(−1−3)2=√20
BD=√(6−8)2+(7−3)2=√20
So Opposite sides are equal
BC=AB
AC=BD
Diagonals are equal
AB= CD
So these are coordinates of the rectanges
Now Area = Length X breath
=2√20 X √20=40
Two vertices of an equilateral triangle are (0, 0) and (3, √3).
Let the third vertex of the equilaterla triangle be (x, y)
Distance between (0, 0) and (x, y) = Distance between (0, 0) and (3, √3) = Distance between (x, y) and (3, √3)
√(x2+ y2) = √(32); + 3) = √[(x - 3)2 + (y - √3)2]
x2 + y2 = 12 --(A)
√(x2 + y2)=√[(x - 3)2 + (y - √3)2]
x2 + 9 - 6x + y2 + 3 - 2√3y = x2 + y2
12 - 6x - 2√3y = 0
3x + √3y = 6
x = (6 - √3y) / 3 -(B)
Substituting the values of x in (A)
[(6 - √3y)/3]2 + y2 = 12
(36 + 3y2 - 12√3y) / 9 + y2 = 12
36 + 3y2 - 12√3y + 9y2 = 108
- 12√3y + 12y2 - 72 = 0
-√3y + y2 - 6 = 0
(y - 2√3)(y + √3) = 0
y = 2√3 or - √3
If y = 2√3, x = (6 - 6) / 3 = 0
If y = -√3, x = (6 + 3) / 3 = 3
So, the third vertex of the equilateral triangle = (0, 2√3) or (3, -√3).
The given points are P(2,-1), Q(3,4), R(-2,3) and S(-3,-2).We have
PQ=√(3−2)2+(4+1)2=√26
QR=√(−2−3)2+(3−4)2=√26
RS=√(−3+2)2+(−2−3)2=√26
SP=√(−3−2)2+(−2−3)2=√26
PR=√(−2−2)2+(3+1)2=4√2
QS=√(−3−3)2+(−2−4)2=6√2
Therefore Sides are equal
PQ=QR=RS=SP= √26
and Diagonal are not equal
PR≠QS
Hence PQRS is a rhombus but not a square.
Now Area of rhombus PQRS is given by
A=12D1×D2
Where D1 and D2 are diagonals
So
A=124√2×6√2
=24sq.units
let A(-4,-1), B(-2,4), C(4,0) and D(2,3) be the given points
AB=√(−2+4)2+(−4+1)2=√13
BC=√(4+2)2+(0+4)2=√52
CD=√(2−4)2+(3−0)2=√13
AD=√(2+4)2+(3+1)2=√52
Therefore Oppossite sides are equal
AD=BC and AB=CD
This proves that ABCD is a parallelogram
Now lets look at the diagonals
AC=√(4+4)2+(0+1)2=√65
?BD=√(2+2)2+(3+4)2=√65
So diagonal are equal
Hence, ABCD is a rectangle
AB=√(1−3)2+(−2−6)2=√68
BC=√(3−5)2+(6−10)2=√20
CD=√(5−3)2+(10−2)2=√68
AD=√(1−3)2+(−2−2)2=√20
Therefore Oppossite sides are equal
AD=BC and AB=CD
This proves that ABCD is a parallelogram
AB=√(1−4)2+(7−2)2=√34
BC=√(4+1)2+(2+1)2=√34
CD=√(−1+4)2+(−1−4)2=√34
AD=√(1+4)2+(7−4)2=√34
AC=√(1+1)2+(7+1)2=√68
BD=√(4+4)2+(2−4)2=√68
Since All sides are equal and diagonal are equal to each other
This is a square
Let A(3, 0), B(6, 4) and C(-1, 3)
AB=√(3−6)2+(0−4)2=5
BC=√(6+1)2+(4−3)2=√50
AC=√(3+1)2+(0−3)2=5
Two sides are equal,so it is isosceles triangle
Also
BC2=AB2+AC2, So it is right angled isosceles triangle.
Let the points be A(-2, -3), B(-1, 0), C(7, -6)
Let the coordinates of the circumcentre of the triangle be O(x, y).
Hence
OA=√(x+2)2+(y+3)2
OB=√(x+1)2+(y)2
OC=√(x−7)2+(y+6)2
Now
(x, y) will the equidistant from the vertices of the triangle as it is the circumcenter
OA=OB=OC
Taking OA=OB
√(x+2)2+(y+3)2=√(x+1)2+(y)2
Squaring both the side and cutting coming terms
x + 3y = -6 --(A)
Taking OB=OC
√(x+1)2+(y)2=√(x−7)2+(y+6)2
Squaring both the side and cutting coming terms
4x -3y=21 --(B)
Solving (A) and (B), we get
x=3 and y=-3
Therefore (3,-3) is the coordinate of circumcenter of the triangle
Let ABCD is the square and A (5,4) and C(1,-6). Lets us assume the coordinate of B(x,y)
Now Sides are equal in square,Therefore
AB=BC
√(x−5)2+(y−4)2=√(x−1)2+(y+6)2
solving this
2x + 5y=1
or
x=1−5y2 -(1)
Now
Diagonal= AC = √(5−1)2+(4+6)2=2√29
Now Diagonal=side×√2
Therefore
side=√58
side=AB=√(x−5)2+(y−4)2
or
58=(x−5)2+(y−4)2
Putting the value of x from (1), we get
[(1−5y2−5)2+(y−4)2]=58
Solving it ,we get
29y2+58y−87=0
Solving this quadratic equation ,we get
y=-3 or 1
Substituting the value of y in (1) ,we get
x=8 or -2
So coordinates of the other vertices are (8, -3) and (-2, 1)
If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
A=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
0=12[p(n−q+n))+m(q−n−q)+(p−m)(q−n)]
0=−pq+2pm−mn+pq−pn−pm+mn
pn = qm
(i) let A(-3, 2), B(5, 4), C(7, -6) and D(-5, -4)
Area of quadrilateral =Area of triangle ABC + Area of triangle ACD
=|12[−3(4+6)+5(−6−2)+7(2−4)]|+|12[−3(−6+4)+7(−4−2)−5(2+6)]|
=|−42|+|−38|=80
(ii)Similarly A= 5.5 units
If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
A=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
(i) A=12[2(6−8)+4(8−5)+8(5−6)]
=0
(ii) A=12[1(1−5)+2(5+1)+4(−1−1)]
=0
PQ=QR
√(6−1)2+(−1−3)2=√(1−x)2+(3−8)2
Squaring both the sides
25+16=1+x2−2x+25
x2−2x−15=0
x = 5 and -3
Go back to Class 10 Main Page using below links