physicscatalyst.com logo





Coordinate Geometry Problems with Solutions




Given below are the Class 10 Maths Problems with Solutions for Coordinate Geometry
(a) Short Answer type
(b) Long answer questions

Short Answer type

Question 1
Prove that the points (a, b + c), (b, c + a) and (c, a + b) are collinear.

Answer

If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
$A= \frac {1}{2} [x_1(y_2 - y_3) + x_2(y_3 -y_1) + x_3(y_1 - y_2)]$
$A= \frac {1}{2} [a(c+a -a -b) + b(a+b -b -c) + c (b+c - c-a)]
$=0$


Question 2
For what value of x will the points (x, -1), (2, 1) and (4, 5) lie on a line?

Answer

If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
$A= \frac {1}{2} [x_1(y_2 - y_3) + x_2(y_3 -y_1) + x_3(y_1 - y_2)]$
$0=\frac {1}{2} [x(1 -5) + 2(5+1) +4(-1-1)]$
$0=-4x +12 -8$
x=2


Question 3.
Check whether the points (4, 5), (7, 6) and (6, 3) are collinear

Answer

If the point are collinear, then Area will be zero
$A=\frac{1}{2}[4(6-3)+7(3-5)+6(5-6)]=-8$
So they are not collinear


Question 4.
Find the value of q for which the points (7, -2), (5, 1), and (3, q) are collinear.

Answer

If the point are collinear, then Area must be zero
$0=\frac{1}{2}[7(1-q)+5(q+2)+3(-2-1)]$
q=4


Long Asnwer type

Question 1.
Find a point on the y – axis which is equidistant from the point A (6, 5) and B (-4, 3).

Answer

Let the point of Y-axis is (0,y)
Then
$\sqrt{(0-6)^{2}+(y-5)^{2}}=\sqrt{(0+4)^{2}+(y-3)^{2}}$
Squaring both the sides
${(0-6)^{2}+(y-5)^{2}}={(0+4)^{2}+(y-3)^{2}}$
36+y2+25-10y=16+y2+9-6y
4y=36
y=9
So point (0,9)


Question 2.
Show that the points (p, p), (-p, -p) and (-p3, p3) are the vertices of an equilateral triangle. Also find its area.

Answer

Let the point be A(p,p) ,B(-p,-p) and C(-p3, p3)
Then
AB=$\sqrt{(-p-p)^{2}+(-p-p)^{2}}$=2p√2
BC=$\sqrt{(-p\sqrt{3}+p)^{2}+(p\sqrt{3}+p)^{2}}$=2p√2
AC=$\sqrt{(-p\sqrt{3}-p)^{2}+(p\sqrt{3}-p)^{2}}$=2p√2
All Sides equal,It is an equilateral triangle
Area of triangle
=$\frac{(side)^2\sqrt {3}}{4}$
=2 3p2 sq. units


Question 3.
Show that four points (0, -1), (6, 7), (-2, 3) and (8, 3) are the vertices of a rectangle. Also find its area.

Answer

Let the point be A(0,-1) ,B(6,7) , C(-2, 3) and D(8,3)3)
Then
AB=$\sqrt{(0-6)^{2}+(-1-7)^{2}}$=10
BC=$\sqrt{(6+2)^{2}+(7-3)^{2}}$=2√20
CD=$\sqrt{(-2-8)^{2}+(3-3)^{2}}$=10
AD=$\sqrt{(0-8)^{2}+(3+1)^{2}}$=2√20
AC=$\sqrt{(0+2)^{2}+(-1-3)^{2}}$=√20
BD=$\sqrt{(6-8)^{2}+(7-3)^{2}}$=√20

So Opposite sides are equal
BC=AB
AC=BD
Diagonals are equal
AB= CD
So these are coordinates of the rectanges

Now Area = Length X breath
=2√20 X √20=40


Question 4.
If two vertices of an equilateral triangle be (0,0), (3, 3), find the third vertex.

Answer

Two vertices of an equilateral triangle are (0, 0) and (3, √3).

Let the third vertex of the equilaterla triangle be (x, y)

Distance between (0, 0) and (x, y) = Distance between (0, 0) and (3, √3) = Distance between (x, y) and (3, √3)

√(x2+ y2) = √(32); + 3) = √[(x - 3)2 + (y - √3)2]

x2 + y2 = 12   --(A)
√(x2 + y2)=√[(x - 3)2 + (y - √3)2]
x2 + 9 - 6x + y2 + 3 - 2√3y = x2 + y2
12 -  6x - 2√3y = 0
3x + √3y = 6
x = (6 - √3y) / 3  -(B)
Substituting the values of x in (A)
 [(6 - √3y)/3]2 + y2 = 12
(36 + 3y2 - 12√3y) / 9 + y2 = 12
 36 + 3y2 - 12√3y + 9y2 = 108
 - 12√3y + 12y2 - 72 = 0
 -√3y + y2 - 6 = 0
 (y - 2√3)(y + √3) = 0
 y = 2√3 or - √3

If y = 2√3, x = (6 - 6) / 3 = 0
If y = -√3, x = (6 + 3) / 3 = 3

So, the third vertex of the equilateral triangle = (0, 2√3) or (3, -√3).



Question 5.
If P (2, -1), Q (3, 4), R (-2, 3) and S (-3, -2) be four points is a plane, show that PQRS is a rhombus but not a square. Find the area of the rhombus.

Answer

The given points are P(2,-1), Q(3,4), R(-2,3) and S(-3,-2).We have
$PQ= \sqrt {(3-2)^2 +(4+1)^2}=\sqrt {26}$
$QR= \sqrt {(-2-3)^2 +(3-4)^2} =\sqrt {26}$
$RS= \sqrt {(-3+2)^2 +(-2-3)^2} =\sqrt {26}$
$SP= \sqrt {(-3-2)^2 +(-2-3)^2} =\sqrt {26}$
$PR= \sqrt {(-2-2)^2 +(3+1)^2} = 4 \sqrt 2$
$QS= \sqrt {(-3-3)^2 +(-2-4)^2}=6 \sqrt 2$

Therefore Sides are equal
PQ=QR=RS=SP= $\sqrt {26}$
and Diagonal are not equal
$PR \ne QS$
Hence PQRS is a rhombus but not a square.
Now Area of rhombus PQRS is given by
$A= \frac {1}{2} D_1 \times D_2$
Where $D_1$ and $D_2$ are diagonals
So
$A=\frac {1}{2} 4 \sqrt 2 \times 6 \sqrt 2$
=24sq.units


Question 6.
Show that the points (-4, -1), (-2, -4), (4, 0) and (2, 3) are the vertices points of a rectangle.

Answer

let A(-4,-1), B(-2,4), C(4,0) and D(2,3) be the given points
$AB= \sqrt {(-2+4)^2 +(-4+1)^2}=\sqrt {13}$
$BC= \sqrt {(4+2)^2 +(0+4)^2}= \sqrt {52}$
$CD= \sqrt {(2-4)^2 +(3-0)^2} = \sqrt {13}$
$AD= \sqrt {(2+4)^2 +(3+1)^2}= \sqrt {52}$
Therefore Oppossite sides are equal
AD=BC and AB=CD
This proves that ABCD is a parallelogram
Now lets look at the diagonals
$AC= \sqrt {(4+4)^2 +(0+1)^2} = \sqrt {65}$
?$BD= \sqrt {(2+2)^2 +(3+4)^2} = \sqrt {65}$
So diagonal are equal
Hence, ABCD is a rectangle


Question 7.
Show that the points A (1, -2), B (3, 6), C (5, 10) and D (3, 2) are the vertices of a parallelogram.

Answer

$AB= \sqrt {(1-3)^2 +(-2-6)^2}=\sqrt {68}$
$BC= \sqrt {(3-5)^2 +(6-10)^2}= \sqrt {20}$
$CD= \sqrt {(5-3)^2 +(10-2)^2} = \sqrt {68}$
$AD= \sqrt {(1-3)^2 +(-2-2)^2}= \sqrt {20}$
Therefore Oppossite sides are equal
AD=BC and AB=CD
This proves that ABCD is a parallelogram


Question 8.
Prove that the points A (1, 7), B (4, 2), C (-1, -1) and D (-4, 4) are the vertices of a square.

Answer

$AB= \sqrt {(1-4)^2 +(7-2)^2}=\sqrt {34}$
$BC= \sqrt {(4+1)^2 +(2+1)^2}= \sqrt {34}$
$CD= \sqrt {(-1+4)^2 +(-1-4)^2} = \sqrt {34}$
$AD= \sqrt {(1+4)^2 +(7-4)^2}= \sqrt {34}$
$AC= \sqrt {(1+1)^2 +(7+1)^2}=\sqrt {68}$
$BD= \sqrt {(4+4)^2 +(2-4)^2}=\sqrt {68}$
Since All sides are equal and diagonal are equal to each other
This is a square


Question 9.
Prove that the points (3, 0), (6, 4) and (-1, 3) are vertices of a right angled isosceles triangle.

Answer

Let A(3, 0), B(6, 4) and C(-1, 3)
$AB=\sqrt {(3-6)^2 +(0-4)^2}=5$
$BC=\sqrt {(6+1)^2 +(4-3)^2}=\sqrt {50}$
$AC=\sqrt {(3+1)^2 +(0-3)^2}=5$
Two sides are equal,so it is isosceles triangle
Also
$BC^2 = AB^2 + AC^2$, So it is right angled isosceles triangle.


Question 10.
Find the circumcenter of the triangle whose vertices are (-2, -3), (-1, 0), (7, -6)

Answer

Let the points be A(-2, -3), B(-1, 0), C(7, -6)
Let the coordinates of the circumcentre of the triangle be O(x, y).
Hence
$OA= \sqrt {(x+2)^2 +(y+3)^2}$
$OB= \sqrt {(x+1)^2 +(y)^2}$
$OC= \sqrt {(x-7)^2 +(y+6)^2}$
Now
(x, y) will the equidistant from the vertices of the triangle as it is the circumcenter
OA=OB=OC
Taking OA=OB
$\sqrt {(x+2)^2 +(y+3)^2}=\sqrt {(x+1)^2 +(y)^2}$
Squaring both the side and cutting coming terms
x + 3y = -6 --(A)
Taking OB=OC
$\sqrt {(x+1)^2 +(y)^2}=\sqrt {(x-7)^2 +(y+6)^2}$
Squaring both the side and cutting coming terms
4x -3y=21 --(B)
Solving (A) and (B), we get
x=3 and y=-3
Therefore (3,-3) is the coordinate of circumcenter of the triangle


Question 11.
If two opposite vertices of a square are (5, 4) and (1, -6), find the co- ordinates of its remaining two vertices.

Answer

Let ABCD is the square and A (5,4) and C(1,-6). Lets us assume the coordinate of B(x,y)
Now Sides are equal in square,Therefore
AB=BC
$\sqrt {(x-5)^2 +(y-4)^2}=\sqrt {(x-1)^2 +(y+6)^2}$
solving this
2x + 5y=1
or
$x=\frac {1- 5y}{2}$ -(1)
Now
Diagonal= AC = $\sqrt {(5-1)^2 +(4+6)^2}= 2 \sqrt {29}$
Now $\text{Diagonal} = \text{side} \times \sqrt 2$
Therefore
$\text{side}= \sqrt {58}$
$\text{side}=AB= \sqrt {(x-5)^2 +(y-4)^2}$
or
$58 = (x-5)^2 +(y-4)^2$
Putting the value of x from (1), we get
$[(\frac {1- 5y}{2} -5)^2 +(y-4)^2]=58$
Solving it ,we get
$29y^2 + 58y -87=0$
Solving this quadratic equation ,we get
y=-3 or 1
Substituting the value of y in (1) ,we get
x=8 or -2
So coordinates of the other vertices are (8, -3) and (-2, 1)


Question 12.
Show that the points A (5, 6), B (1, 5), C (2, 1) and D (6, 2) are the vertices of a square.
Question 13
If the points (p, q) (m, n) and (p - m, q -n) are collinear, show that pn = qm.

Answer

If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
$A= \frac {1}{2} [x_1(y_2 - y_3) + x_2(y_3 -y_1) + x_3(y_1 - y_2)]$
$0=\frac {1}{2} [p(n -q+n)) + m(q-n -q) +(p-m)(q-n)]$
$0=-pq + 2pm -mn + pq-pn-pm +mn$
pn = qm


Question 14
Find k so tht the point P (-4, 6) lies on the line segment joining A (k, 10) and B (3, -8). Also, find the ratio in which P divides AB.
Question 15
Find the area of the quadrilaterals, the co- ordinates of whose vertices are
(i)(-3, 2), (5, 4), (7, -6) and (-5, -4)
(ii)(1, 2), (6, 2), (5, 3) and (3, 4)
(iii) (-4, -2), (-3, -5), (3, -2), (2, 3)

Answer

(i) let A(-3, 2), B(5, 4), C(7, -6) and D(-5, -4)
Area of quadrilateral =Area of triangle ABC + Area of triangle ACD
$=|\frac {1}{2} [-3(4 +6) + 5(-6 -2) +7(2-4)]| + |\frac {1}{2}[-3(-6 +4) + 7(-4 -2) -5(2+6)]|$
$=|-42| + |-38|= 80 $
(ii)Similarly A= 5.5 units


Question 16
Show that the following sets of points are collinear
(i) (2, 5), (4, 6) and (8, 8)
(ii) (1, -1), (2, 1) and (4, 5)

Answer

If the three point are collinear, then Area of the triangle will be zero
Area of triangle is given by
$A= \frac {1}{2} [x_1(y_2 - y_3) + x_2(y_3 -y_1) + x_3(y_1 - y_2)]$
(i) $A=\frac {1}{2} [2(6 -8) + 4(8 -5) +8(5-6)]$
=0
(ii) $A=\frac {1}{2} [1(1 -5) + 2(5 +1) +4(-1-1)]$
=0


Question 17.
Find the value of x such that PQ = QR where the co- ordinates of P, Q and R are (6, -1), (1, 3) and (x, 8) respectively.

Answer

PQ=QR
$\sqrt {(6-1)^2 + (-1-3)^2 } = \sqrt {(1-x)^2 + (3-8)^2}$
Squaring both the sides
$25 + 16 = 1 + x^2 -2x + 25$
$x^2 -2x -15=0$
x = 5 and -3




Also Read





Go back to Class 10 Main Page using below links
Class 10 Maths Class 10 Science

Practice Question

Question 1 What is $1 - \sqrt {3}$ ?
A) Non terminating repeating
B) Non terminating non repeating
C) Terminating
D) None of the above
Question 2 The volume of the largest right circular cone that can be cut out from a cube of edge 4.2 cm is?
A) 19.4 cm3
B) 12 cm3
C) 78.6 cm3
D) 58.2 cm3
Question 3 The sum of the first three terms of an AP is 33. If the product of the first and the third term exceeds the second term by 29, the AP is ?
A) 2 ,21,11
B) 1,10,19
C) -1 ,8,17
D) 2 ,11,20



Latest Updates
Sound Class 8 Science Quiz

Limits Class 11 MCQ

Circles in Conic Sections Class 11 MCQ

Plant Kingdom free NEET mock tests

The Living World free NEET mock tests