physicscatalyst.com logo





Class 10 trigonometry Problems with Solutions



Question 1.
Given
$a cosec A = p$ and $b cot A = q$,
then prove that
$\frac {p^2}{a^2} - \frac {q^2}{b^2} =1$


Question 2.
Prove the following trigonometric identities:
a.$cos^2 \theta (1 + tan^2 \theta) = 1$
b. $cos^2 \theta + \frac {1}{1+ cot^2 \theta} =1$
c. $ \frac {1}{1+ sin \theta } + \frac {1}{1-sin \theta } = 2 sec^2 \theta$
d. $cosec^2 \theta + sec^2 \theta =cosec^2 \theta sec^2 \theta$
e.$tan \theta - cot \theta = \frac {2sin^2 \theta -1}{sin \theta cos \theta}$

Question 3.
If A, B, C are interior angles of $\Delta ABC$, show that
$cosec ^2 (\frac {B+C}{2} ) - tan ^2 \frac {A}{2} =1$

Question 4.
If $x = a sec \theta + b tan \theta $ and $y=a tan \theta + b sec \theta $ ,prove that
$x^2 -y^2 = a^2 -b^2$


Question 5
Prove the following identities:
i. $2(sin^6 \theta + cos^6 \theta ) -3 (sin^4 \theta + cos^4 \theta ) + 1=0$
ii. $sin^6 \theta + cos^6 \theta + 2 sin^2 \theta cos ^2 theta =1$
iii. $(sin^8 \theta -cos^8 \theta = (sin^2 \theta -cos^2 \theta) (1 -2sin^2 \theta cos^2 \theta )$



Question 6.
If $cosec A -cot A = q$, then show that
$ \frac {q^2 -1}{q^2 + 1} + cos A =0$


Question 7.
If $x = p sec \alpha cos \beta$, $y = q sec \alpha sin \beta$ and $z = r tan \alpha$, then show that
$\frac {x^2}{p^2} + \frac {y^2}{q^2} -\frac {z^2}{r^2} =1$


Question 8.
Prove that
$ (1+ cot \theta) (1 + tan \theta + sec \theta )=2$

Question 9.
Prove that
cot4 A – 1 = cosec4 A – 2cosec2 A
Question 10.
$ \frac {sin A -cos A +1}{sin A + cos A -1} = \frac {1}{sec A -tan A}$
Question 11.
if $tan A + sin A =m$ and $tan A -sin A =n$
Prove that


Question 12
$ sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A$


Question 13
$ \frac {tan A}{1- cot A} + \frac {cot A}{1-tan A} = 1 + tan A + cot A$
Question 14
$\sqrt {sec^2 A + cosec^2 A} = (tan A + cot A)$


Question 15
if $xsin^3 A + ycos^3 A = sin A cos A$
and $x sin A = y cos A$
Prove that
$x^2 + y^2 =1$

Download Trigonometry Problems as pdf
link to this page by copying the following text
Also Read




Go back to Class 10 Main Page using below links
Class 10 Maths Class 10 Science

Practice Question

Question 1 What is $1 - \sqrt {3}$ ?
A) Non terminating repeating
B) Non terminating non repeating
C) Terminating
D) None of the above
Question 2 The volume of the largest right circular cone that can be cut out from a cube of edge 4.2 cm is?
A) 19.4 cm3
B) 12 cm3
C) 78.6 cm3
D) 58.2 cm3
Question 3 The sum of the first three terms of an AP is 33. If the product of the first and the third term exceeds the second term by 29, the AP is ?
A) 2 ,21,11
B) 1,10,19
C) -1 ,8,17
D) 2 ,11,20



Latest Updates
Synthetic Fibres and Plastics Class 8 Practice questions

Class 8 science chapter 5 extra questions and Answers

Mass Calculator

3 Fraction calculator

Garbage in Garbage out Extra Questions7