physicscatalyst.com logo





Class 10 trigonometry Problems with Solutions




Question 1.
Given
$a cosec A = p$ and $b cot A = q$,
then prove that
$\frac {p^2}{a^2} - \frac {q^2}{b^2} =1$

Answer

$cosec A = \frac {p}{a}$

$cosec^2 A = \frac {p^2}{a^2}$

Similarly

$ cot A = \frac {q}{b}$
$cot^2 A = \frac {q^2}{b^2}$
Now
$cosec^2 A - cot^2 A=1$
$\frac {p^2}{a^2} - \frac {q^2}{b^2} =1$



Question 2.
Prove the following trigonometric identities:
a.$cos^2 \theta (1 + tan^2 \theta) = 1$
b.$cos^2 \theta + \frac {1}{1+ cot^2 \theta} =1$
c.$ \frac {1}{1+ sin \theta } + \frac {1}{1-sin \theta } = 2 sec^2 \theta$
d.$cosec^2 \theta + sec^2 \theta =cosec^2 \theta sec^2 \theta$
e.$tan \theta - cot \theta = \frac {2sin^2 \theta -1}{sin \theta cos \theta}$

Question 3.
If A, B, C are interior angles of $\Delta ABC$, show that
$cosec ^2 (\frac {B+C}{2} ) - tan ^2 \frac {A}{2} =1$

Question 4.
If $x = a sec \theta + b tan \theta $ and $y=a tan \theta + b sec \theta $ ,prove that
$x^2 -y^2 = a^2 -b^2$

Answer

$x = a sec \theta + b tan \theta $
$x^2 =a^2 sec^2 \theta + b^2 tan^2 \theta + ab sec \theta tan \theta$
Similarly
$y=a tan \theta + b sec \theta $
$y^2 = a^2 tan^2 \theta + b^2 sec^2 \theta + ab sec \theta tan \theta$
Now
$x^ -y^2$
$=(a^2 -b^2)(sec^2 \theta -tan^2 \theta)$
$=(a^2 -b^2)$



Question 5.
Prove the following identities:
i. $2(sin^6 \theta + cos^6 \theta ) -3 (sin^4 \theta + cos^4 \theta ) + 1=0$
ii. $sin^6 \theta + cos^6 \theta + 2 sin^2 \theta cos ^2 theta =1$
iii. $(sin^8 \theta -cos^8 \theta = (sin^2 \theta -cos^2 \theta) (1 -2sin^2 \theta cos^2 \theta )$



Question 6.
If $cosec A -cot A = q$, then show that
$\frac {q^2 -1}{q^2 + 1} + cos A =0$

Answer

$cosec A -cot A = q$
$\frac {1}{sin A} - \frac {cos A}{sin A} =q$
$ \frac {1-cos A }{sin A}=q$
$ \frac {(1-cos A)^2}{sin^2 A} = q^2$
$\frac {1- cos A}{1+ cos A} = q^2$
$ \frac {q^2 -1}{q^2 + 1} + cos A =0$



Question 7.
If $x = p sec \alpha cos \beta$, $y = q sec \alpha sin \beta$ and $z = r tan \alpha$, then show that
$\frac {x^2}{p^2} + \frac {y^2}{q^2} -\frac {z^2}{r^2} =1$

Answer

$x = p sec \alpha cos \beta$
$\frac {x}{p} = sec \alpha cos \beta$
Squaring
$\frac {x^2}{p^2}= sec^2 \alpha cos^2 \beta$ -(1)

$y = q sec \alpha sin \beta$
$\frac {y}{q} =sec \alpha sin \beta$
Squaring
$\frac {y^2}{q^2} = sec^2 \alpha sin^ \beta$ --(2)
Adding (1) and (2)
$\frac {x^2}{p^2} + \frac {y^2}{q^2} =sec^2 \alpha (cos^2 \beta + sin^2 \beta)$
$\frac {x^2}{p^2} + \frac {y^2}{q^2} =sec^2 \alpha$

$z = r tan \alpha$
$ \frac {z}{r} = tan \alpha$
Squaring
$\frac {z^2}{r^2}= tan^2 \alpha$

Now
$sec^2 \alpha - tan^2 \alpha = 1$
$\frac {x^2}{p^2} + \frac {y^2}{q^2} -\frac {z^2}{r^2} =1$



Question 8.
Prove that
$(1+ cot \theta) (1 + tan \theta + sec \theta )=2$

Question 9.
Prove that
cot4 A – 1 = cosec4 A – 2cosec2 A
Question 10.
$\frac {sin A -cos A +1}{sin A + cos A -1} = \frac {1}{sec A -tan A}$
Question 11.
if $tan A + sin A =m$ and $tan A -sin A =n$
Prove that
$m^ -n^2 = 4 \sqrt {mn}$

Answer

$tan A + sin A =m$ --(1)
$tan A -sin A =n$ --(2)
Squaring and subtracting
$m^2 -n^2 = tan^2 A + sin^2 A +2 tan A sin A - tan^2 A -sin^2 A + 2tan A sin A$
$m^2 -n^2 = 4tan A sin A$

Multiplying 1 and 2
$tan^2 A -sin^2 A = mn$
$sin^2 A ( \frac {1}{cos^2 A} -1) = mn$
$sin^2 A \frac {1-cos^2 A}{cos^2 A}=mn$
$ tan^2 A (1-cos^2A) =mn$
$tan^2 A sin^2 A =mn$
$tan A sin A = \sqrt {mn}$
Hence
$m^ -n^2 = 4 \sqrt {mn}$



Question 12
$sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A$

Answer

LHS
$sin A(1 + tan A) + cos A(1 + cot A)$
$= sin A( 1 + \frac {sin A}{cos A}) + cos A ( 1 + \frac {cos A }{sin A})$
$= sin A \frac {sin A + cos A}{cos A} + cos A \frac {sinA + cos A}{sin A}$
$= (sin A + cos A) ( \frac {sin A }{cos A} + \frac {cos A}{sin A})$
$= (sin A + cos A) (\frac {sin^2 A + cos^2 A}{sin A cos A})$
$=\frac {sin A + cos A}{sin A cos A}$
$=sec A + cosec A$



Question 13
$\frac {tan A}{1- cot A} + \frac {cot A}{1-tan A} = 1 + tan A + cot A$
Question 14
$\sqrt {sec^2 A + cosec^2 A} = (tan A + cot A)$

Answer

LHS
$\sqrt {sec^2 A + cosec^2 A}$
$= \sqrt {1 + tan^2 A + 1 + cot^2 A}$
$= \sqrt { tan^2 A + cot^2 A + 2}$
$= \sqrt { tan^2 A + cot^2 A + 2 tan A cot A}$ as tanA cot A=1
$= \sqrt {(tan A + cot A)^2}$
$=tan A + cot A$



Question 15
if $xsin^3 A + ycos^3 A = sin A cos A$
and $x sin A = y cos A$
Prove that
$x^2 + y^2 =1$

Answer

$xsin^3 A + ycos^3 A = sin A cos A$
$(xsin A) sin^2A + (ycosA)cos^2 A = sin A cos A$
Now $x sin A = y cos A$
$(xsin A) sin^2A + (x sin A)cos^2 A = sin A cos A$
$xsinA (sin^2 A + cos^2 A) =sin A cos A$
$x=cos A$
Now
$x sin A = y cos A$
$cos A sin A = y cos A$
$y=sin A$
Now
$x^2 + y^2 = sin^2 A + cos^2 A =1$


Summary

This Class 10 trigonometry Problems with answers is prepared keeping in mind the latest syllabus of CBSE . This has been designed in a way to improve the academic performance of the students. If you find mistakes , please do provide the feedback on the mail.You can download in PDF form also using the below links


Download Trigonometry Problems as pdf
Also Read


Books Recommended

  1. Arihant I-Succeed CBSE Sample Paper Class 10th (2024-2025)
  2. Oswaal CBSE Question Bank Class 10 Mathematics (Standard) (2024-2025)
  3. PW CBSE Question Bank Class 10 Mathematics with Concept Bank (2024-2025)
  4. Bharati Bhawan Secondary School Mathematics CBSE for Class 10th - (2024-25) Examination..By R.S Aggarwal.



Go back to Class 10 Main Page using below links

Class 10 Maths Class 10 Science



Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ