- Square Number
- How to find the square of Number easily
- |
- Pythagorean triplets
- |
- Square Root
- |
- How to Find Square root
- |
- Estimating Digits in the Square Root

In this page we have *NCERT Solutions for Class 8 Maths Chapter 6 :Square roots * for
EXERCISE 1 . Hope you like them and do not forget to like , social share
and comment at the end of the page.

What will be the unit digit of the squares of the following numbers?

(i) 81

(ii) 272

(iii) 799

(iv) 3853

(v) 1234

(vi) 26387

(vii) 52698

(viii) 99880

(ix) 12796

(x) 55555

1 |
1 Explanation: Since, $1^2=1$ |

2 |
4 Explanation: Since, $2^2= 4$, |

3 |
1 Explanation: Since, $9^2= 81$ |

4 |
9 Explanation: Since $3^2= 9$ |

5 |
6 Explanation: Since, $4^2= 16$ |

6 |
9 Explanation: Since, $7^2= 49$ |

7 |
4 Explanation: Since, $8^2= 64$. So |

8 |
0 Since, $0^2= 0$. |

9 |
6 Explanation: Since, $6^2= 36$ |

10 |
5 Explanation: Since, $5^2= 25$ |

The following numbers are obviously not perfect squares. Give reason.

- 1057
- 23453
- 7928
- 222222
- 64000
- 89722
- 222000
- 505050

So (i), (ii), (iii), (iv), (vi) don’t have any of the 0, 1, 4, 5, 6, or 9 at unit’s place, so they are not be perfect squares.

So (v), (vii) and (viii) don’t have even number of zeroes at the end so they are not perfect squares.

The squares of which of the following would be odd numbers?

- 431
- 2826
- 7779
- 82004

- 431 square will end in 1,So odd number
- 2826 square will end in 6 ,so even number
- 779 square will end in 1,So odd number
- 82004 square will end in 6 ,so even number

Observe the following pattern and find the missing digits.

$11^2= 121$

$101^2= 10201$

$1001^2= 1002001$

$100001^2$= 1.........2.......1

$10000001^2$= ...............

$100001^2= 10000200001$

$10000001^2= 100000020000001$

Observe the following pattern and supply the missing numbers.

$11^2= 121$

$101^2= 10201$

$10101^2= 102030201$

$1010101^2$= ..................

..............

$1010101^2= 1020304030201$

$101010101^2=10203040504030201$

Using the given pattern, find the missing numbers.

$1^2+ 2^2+ 2^2= 3^2$

$2^2+ 3^2+ 6^2= 7^2$

$3^2+ 4^2+ 12^2= 13^2$

4

5

6

Relation among first, second and third number - Third number is the product of first and second number

Relation between third and fourth number - Fourth number is 1 more than the third number

$4^2+ 5^2+ 20^2= 21^2$

$5^2+ 6^2+ 30^2= 31^2$

$6^2+ 7^2+ 42^2= 43^2$

Without adding, find the sum.

(i) $1 + 3 + 5 + 7 + 9$

(ii) $1 + 3 + 5 + 7 + 9 + I1 + 13 + 15 + 17 +19$

(iii) $1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23$

Explanation:

$1 + 3 = 2^2= 4$

$1 + 3 + 5 = 3^2= 9$

$1 + 3 + 5 + 7 = 4^2=16$

$1 + 3 + 5 + 7 + 9 = 5^2= 25$

So Sum of n odd numbers starting from 1 = $n^2$

From the above derivation we can answer the above questions

- Since, there are 5 consecutive odd numbers, Thus, their sum = $5^2= 25$
- Since, there are 10 consecutive odd numbers, Thus, their sum = $10^2= 100$
- Since, there are 12 consecutive odd numbers, Thus, their sum = $12^2= 144$

(i) Express 49 as the sum of 7 odd numbers.

(ii) Express 121 as the sum of 11 odd numbers.

Explanation:

$1 + 3 = 2^2= 4$

$1 + 3 + 5 = 3^2= 9$

$1 + 3 + 5 + 7 = 4^2=16$

$1 + 3 + 5 + 7 + 9 = 5^2= 25$

So Sum of n odd numbers starting from 1 = $n^2$

1) Since, $49 = 7^2$

So, $7^2$ can be expressed as follows:

$1 + 3 + 5 + 7 + 9 + 11 + 13$

2) Since, $121 = 11^2$

Therefore, $121 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21$

How many numbers lie between squares of the following numbers?

(i) 12 and 13

(ii) 25 and 26

(iii) 99 and 100

i. $12^2= 144$

$13^2= 169$

Now, 169 - 144 = 25

So, there are 25 - 1 = 24 numbers lying between $12^2$ and $13^2$

ii. We know that, $25^2= 625$

And, $26^2= 676$

Now, 676 - 625 = 51

So, there are 51 - 1 = 50 numbers lying between $25^2$ and $26^2$

3) We know that, $99^2= 9801$

And, $100^2= 10000$

Now, $10000 - 9801 = 199$

So, there are 199 - 1 = 198 numbers lying between $99^2$ and $100^2$

Download this assignment as pdf

Class 8 Maths Class 8 Science

Given below are the links of some of the reference books for class 8 Math.

- Mathematics Foundation Course for JEE/Olympiad : Class 8 This book can take students maths skills further. Only buy if child is interested in Olympiad/JEE foundation courses.
- Mathematics for Class 8 by R S Aggarwal Detailed Mathematics book to clear basics and concepts. I would say it is a must have book for class 8 student.
- Pearson Foundation Series (IIT -JEE / NEET) Physics, Chemistry, Maths & Biology for Class 8 (Main Books) | PCMB Combo : These set of books could help your child if he aims to get extra knowledge of science and maths. These would be helpful if child wants to prepare for competitive exams like JEE/NEET. Only buy if you can provide help to the child while studying.
- Reasoning Olympiad Workbook - Class 8 :- Reasoning helps sharpen the mind of child. I would recommend students practicing reasoning even though they are not appearing for Olympiad.

You can use above books for extra knowledge and practicing different questions.

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using feedback button or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.