Binomial Theorem
- An algebraic expression containing two terms is called binomial expression.
Example
$( x+a)$
$(\frac {1}{2} +x)$
$(\frac {2}{x} - \frac{1}{x^3})$
- The general form of the binomial expression is $(x+a)$ and expansion $(x+a)^n , n \in N$ is called Binomial expression
- It was developed by Sir Issac newton
- The general expression for the Binomial Theorem is
$(x+a)^n = ^{n}C_{0} x^n a^0 + ^{n}C_{1} x^{n-1} a^1 + ^{n}C_{2} x^{n-2} a^2 + .....+ ^{n}C_{r} x^{n-r} a^r ....+^{n}C_{n} x^{0} a^n $
$(x+a)^{n} = \sum_{k=0}^{n} {}^{n} C_k x^{n-k}a^{k} $
Proof:
We can prove this theorem with the help of mathematical induction
Let us assume P(n) be the statement is
$(x+a)^n = ^{n}C_{0} x^n a^0 + ^{n}C_{1} x^{n-1} a^1 + ^{n}C_{2} x^{n-2} a^2 + .....+ ^{n}C_{r} x^{n-r} a^r ....+ ^{n}C_{n} x^{0} a^n $
Step 1
Now the value of P(1)
$(x+a)^1 = ^{1}C_{0} x^1 a^0 + ^{1}C_{1} x^{1-1} a^1$
$=(x+a)$
So P(1) is true
Step 2
Now the value of P(m)
$(x+a)^m = ^{m}C_{0} x^m a^0 + ^{m}C_{1} x^{m-1} a^1 + ^{m}C_{2} x^{m-2} a^2 + ...+ ^{m}C_{m} x^{0} a^m $
Now we have to prove
$(x+a)^{m+1} = ^{m+1}C_{0} x^{m+1} a^0 + ^{m+1}C_{1} x^{m} a^1 + ^{m+1}C_{2} x^{m-1} a^2 +...+ ^{m+1}C_{m+1} x^{0} a^{m+1} $
Now
$(x+a)^{m+1} =(x+a)(x+a)^m $
$= (x+a)( ^{m+1}C_{0} x^{m+1} a^0 + ^{m+1}C_{1} x^{m} a^1 + ^{m+1}C_{2} x^{m-1} a^2 + ...+ ^{m+1}C_{m+1} x^{0} a^{m+1} $
$= ^m C_0 x^{m+1}a{0} + ( ^mC_1 + ^mC_0) x^ma^1 + (^mC_2 + ^mC_1) x^{m-1}a^2 +.... $
$+(^m C_{m-1} + ^mC_{m}) x^1a^m + ^mC_m x^0a^{m+1}$
As $ ^mC_{r-1} + ^mC_r = ^{m+1}C_r$
So,
$= ^{m+1}C_{0} x^{m+1} a^0 + ^{m+1}C_{1} x^{m} a^1 + ^{m+1}C_{2} x^{m-1} a^2 + ...+ ^{m+1}C_{m+1} x^{0} a^{m+1} $
So by principle of Mathematical induction, P(n) is true for $n \in N$
Important conclusion from Binomial Theorem
1
|
$(x+a)^n =\sum_{k=0}^{n} {}^{n} C_k x^{n-k}a^{k} $
We can easily see that $(x+a)^n$ has $(n+1)$ terms as k can have values from 0 to n
|
2
|
The sum of indices of x and a in each is equal to n
$x^{n-k}a^{k}$
|
3
|
The coefficient nCr is each term is called binomial coefficient
|
4
|
$(x-a)^n$ can be treated as $[x+(-a)]^n$
So
$(x -a)^n =\sum_{k=0}^{n} {}^{n} C_k (-1)^k x^{n-k}a^k $
So the terms in the expansion are alternatively positive and negative. The last term is positive or negative depending on the values of n
|
5.
|
$(1+x)^n$ can be treated as $(x+a)^1$ where x=1 and a=x
So
$(1 +x)^n =\sum_{k=0}^{n} {}^{n} C_k x^{k}$
This is the expansion is ascending order of power of x
|
6.
|
$(1+x)^n$ can be treated as $(x+a)^n$ where x=x and a=1
So
$(1 +x)^n =\sum_{k=0}^{n} {}^{n} C_k x^{n-k}$
This is the expansion is descending order of power of x
|
7.
|
$(1-x)^n$ ;can be treated as $(x+a)^n$ where x=1 and a=-x
So
$(1 -x)^n =\sum_{k=0}^{n} {}^{n} C_k (-1)^k x^{k}$
This is the expansion is ascending order of power of x
|
Question -1
Expand using Binomial Theorem
$(x^2 +2)^5$
Solution
We know from binomial Theorem
$(x+a)^n = ^{n}C_{0} x^n a^0 + ^{n}C_{1} x^{n-1} a^1 + ^{n}C_{2} x^{n-2} a^2 + .....+ ^{n}C_{r} x^{n-r} a^r ....+^{n}C_{n} x^{0} a^n $
So putting values $x=x^2 ,a=2 \; and \; n=5 $
We get
$(x^2 +2)^5= ^{5}C_{0} (x^2)^5 + ^{5}C_{1} (x^2)^4 2^1 + ^{5}C_{2} (x^2)^3 2^2 + ^{5}C_{3} (x^2)^2 2^3 + ^{5}C_{4} (x^2)^1 2^4 + ^{5}C_{5} (x^2)^0 2^5$
$=x^10 +20x^8 +160x^6 +640x^4 +1280x^2 +1024$
Practice Questions
- $(x +2)^6$
- $(1 -x^2)^5$
- $(1 -x)^7$
- $(z - x)^5$
General Term in Binomial Expansion
$(x+a)^n =\sum_{k=0}^{n} {}^{n} C_k x^{n-k}a^k $
The First term would be = $ ^{n} C_0 x^n a^0$
The Second term would be =$ ^{n} C_1 x^{n-1} a^1$
The Third term would be = $ ^{n} C_2 x^{n-2} a^2$
The Fourth term would be = $ ^{n} C_3 x^{n-3} a^3$
Like wise (k+1) term would be
$T_{k+1}= ^n C_k x^{n-k}a^k $
This is called the general term also as every term can be find using this term
$T_1= T_{0+1}=^n C_0 x^n a^0 $
$T_2= T_{1+1}=^n C_1 x^{n-1} a^1 $
Similarly for
$(x -a)^n =\sum_{k=0}^{n} {}^{n} C_k (-1)^k x^{n-k}a^k $
$T_{k+1}= ^n C_k (-1)^k x^{n-k}a^k $
Again similarly for
$(1 +x)^n =\sum_{k=0}^{n} {}^{n} C_k x^{k}$
$T_{k+1}= ^n C_k x^{k}$
Again similarly for
$(1 -x)^n =\sum_{k=0}^{n} {}^{n} C_k (-1)^k x^{k}$
$T_{k+1}= ^n C_k (-1)^k x^{k}$
To summarize it
Binomial term
|
(k+1) term
|
$(x+a)^n =\sum_{k=0}^{n} {}^{n} C_k x^{n-k}a^k $
|
$T_{k+1}= ^n C_k x^{n-k}a^k $
|
$(x -a)^n =\sum_{k=0}^{n} {}^{n} C_k (-1)^k x^{n-k}a^k $
|
$T_{k+1}= ^n C_k (-1)^k x^{n-k}a^k $
|
$(1 +x)^n =\sum_{k=0}^{n} {}^{n} C_k x^{k}$
|
$T_{k+1}= ^n C_k x^{k}$
|
$(1 -x)^n =\sum_{k=0}^{n} {}^{n} C_k (-1)^k x^{k}$
|
$T_{k+1}= ^n C_k (-1)^k x^{k}$
|
Middle Term in Binomial Expansion
- A binomial expansion contains $(n+1)$ terms
- If n is even then the middle term would $[(\frac {n}{2}+1 ]$ th term
- If n is odd,then $\frac{n+1}{2} $ and $ \frac {n+3}{3}$ are the middle term
Solved Examples
Question-1
If the coefficient of $(2k + 4)$ and $(k - 2)$ terms in the expansion of $(1+x)^{24}$ are equal then find the value of k
Solution:
The general term of $(1 + x)^n$ is
$T_{k+1}= ^n C_k x^{k}$
Hence coefficient of (2k + 4)
th term will be
$T_{2k+4} = T_{2k+3+1} = ^{24} C_{2k+3}$
and coefficient or (k - 2)
th term will be
$T_{k-2} = T_{k-3+1} = ^{24} C_{k-3}$
As per question both the terms are equal
24C
2k+3 =
24C
k-3.
or (2k + 3) + (k-3) = 24
k = 8
Practice Question
- Prove that $^nC_0 + ^nC_1 + ^nC_2 + .....+ ^nC_n = 2^n $
- Find the Coefficent of $x^5$ in the expansion $(1+x)^3 (1-x)^6$
- Use Binomial theorem to evaluate $(96)^3$
Related Topics
link to this page by copying the following text
Go back to Class 12 Main Page using below links
Class 12 Maths
Class 12 Physics
Class 12 Chemistry
Class 12 Biology