## Composition of Functions:

Let f : A-> B and g : B -> C be two functions. Then the composition of f and g, denoted by gof, is defined as the function gof : A -> C given by

gof=g(f(x) for all x ∈ A

**Example**
f(x) =(x+3)

g(x) =x

^{2}
gof=g(f(x))=g(x+3)=(x+3)

^{2}
Similarly

fog=f(g(x))=f(x

^{2})=x

^{2} +3

In this case

fog ≠ gof

**Example**
1. Consider f : N -> N, g : N -> N and h : N -> R defined as

$f(x) = 2x$,$g(y) = 3y + 4$ and $h(z) = sin z$, for x, y and z in N.

Show that ho(gof ) = (hog) of.

**Solution**
We have

ho(gof) (x) = h(gof (x)) = h(g(f (x))) = h(g(2x))

= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4) for x in N.

Also,

((hog)o f ) (x) = (hog) ( f (x)) = (hog) (2x) = h ( g (2x))

= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4), for x in N.

This shows that ho(gof) = (hog) of

2. Given $f(x) = x^2 + 1$ and $g(x) = 5x +3$, find

(a) (f o g)(x)

(b) (g o f)(x)

**Solution**
(a) (f o g)(x)

$= f(5x+3)$

$= (5x+3)^2 + 1$

$= 25x^2 + 30x + 9 + 1$

$= 25x^2 + 30x + 10$

(b) (g o f)(x)

$= g(x^2 + 1)$

$= 5(x^2 + 1) + 3$

$= 5x^2 + 8$

## Related Topics

**link to this page by copying the following text**
Class 12 Maths
Class 12 Physics