physicscatalyst.com logo




Composition of Functions






Table Of Contents

Composition of Functions:

Let f : A -> B and g : B -> C be two functions. Then the composition of f and g, denoted by $g \circ f$, is defined as the function $g \circ f$ : A -> C given by
$g \circ f=g(f(x))$ for all x ∈ A
Composition of Functions, Properties and solved examples

Here's a step-by-step process to understand composition of functions
  • Start with the input x.
  • Apply the function f(x) to the input x, and obtain the result f(x).
  • Use the result f(x) as the input for the function g.
  • Apply the function g to f(x) to obtain the final output, g(f(x)).
Example
f(x) =(x+3)
g(x) =x2

$g \circ f=g(f(x))=g(x+3)=(x+3)^2$
Similarly
$f \circ g=f(g(x))=f(x^2)=x^2 +3$

In this case
$g \circ f \ne f \circ g$

Properties of Composition of Functions

  • $g \circ f$ is not necessary equal to $f \circ g$.
  • Domain of $g \circ f$ is the domain of f
  • if function f and g is one-one, the $g \circ f$ is one-one
  • if function f and g is onto, the $g \circ f$ is onto

Theorem Composition of three function

If f : X -> Y, g : Y -> Z and h : Z -> S are functions, then composite of these three function are
$h \circ (g \circ f)$ and $(h \circ g ) \circ f)$
Theorem
$h \circ (g \circ f) =(h \circ g ) \circ f$
Proof
$h \circ (g \circ f) (x) =h \circ (g(f(x))= h(g(f(x))$ for all x ∈ A
$(h \circ g ) \circ f (x) =h \circ g (f(x)= h(g(f(x))$ for all x ∈ A
Hence $h \circ (g \circ f) =(h \circ g ) \circ f$


Solved Example

Example 1
Consider f : N -> N, g : N -> N and h : N -> R defined as
$f(x) = 2x$,$g(y) = 3y + 4$ and $h(z) = sin z$, for x, y and z in N.
Show that $h \circ (g \circ f ) = (h \circ g) \circ f$.
Solution
We have
$h \circ (g \circ f )= h(g(f (x))) = h(g(2x))= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4)$ for x in N.
Also,
$(h \circ g) \circ f$ (x) = (hog) ( f (x)) = (hog) (2x) = h ( g (2x))
= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4), for x in N.
This shows that $h \circ (g \circ f) =(h \circ g ) \circ f$

Example 2
Given $f(x) = x^2 + 1$ and $g(x) = 5x +3$, find
(a) (f o g)(x)
(b) (g o f)(x)
Solution
(a) (f o g)(x)
$= f(5x+3)$
$= (5x+3)^2 + 1$
$= 25x^2 + 30x + 9 + 1$
$= 25x^2 + 30x + 10$
(b) (g o f)(x)
$= g(x^2 + 1)$
$= 5(x^2 + 1) + 3$
$= 5x^2 + 8$

Also Read





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology


Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ