Composition of Functions

Table Of Contents

Composition of Functions:

Let f : A-> B and g : B -> C be two functions. Then the composition of f and g, denoted by $g \circ f$, is defined as the function $g \circ f$ : A -> C given by
$g \circ f=g(f(x)$ for all x ∈ A
Composition of Functions, Properties and solved examples

Here's a step-by-step process to understand composition of functions
  • Start with the input x.
  • Apply the function f(x) to the input x, and obtain the result f(x).
  • Use the result f(x) as the input for the function g.
  • Apply the function g to f(x) to obtain the final output, g(f(x)).
f(x) =(x+3)
g(x) =x2

$g \circ f=g(f(x))=g(x+3)=(x+3)^2$
$f \circ g=f(g(x))=f(x^2)=x^2 +3$

In this case
fog ≠ gof

Properties of Composition of Functions

  • $g \circ f$ is not necessary equal to $f \circ g$.
  • Domain of $g \circ f$ is the domain of f
  • if function f and g is one-one, the $g \circ f$ is one-one
  • if function f and g is onto, the $g \circ f$ is onto

Theorem Composition of three function

If f : X -> Y, g : Y -> Z and h : Z -> S are functions, then composite of these three function are
$h \circ (g \circ f)$ and $(h \circ g ) \circ f)$
$h \circ (g \circ f) =(h \circ g ) \circ f$
$h \circ (g \circ f) (x) =h \circ (g(f(x))= h(g(f(x))$ for all x ∈ A
$(h \circ g ) \circ f (x) =h \circ g (f(x)= h(g(f(x))$ for all x ∈ A
Hence $h \circ (g \circ f) =(h \circ g ) \circ f$

Solved Example

Example 1
Consider f : N -> N, g : N -> N and h : N -> R defined as
$f(x) = 2x$,$g(y) = 3y + 4$ and $h(z) = sin z$, for x, y and z in N.
Show that $h \circ (g \circ f ) = (h \circ g) \circ f$.
We have
$h \circ (g \circ f )$ (x) = h(gof (x)) = h(g(f (x))) = h(g(2x))
= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4) for x in N.
$(h \circ g) \circ f$ (x) = (hog) ( f (x)) = (hog) (2x) = h ( g (2x))
= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4), for x in N.
This shows that ho(gof) = (hog) of

Example 2
Given $f(x) = x^2 + 1$ and $g(x) = 5x +3$, find
(a) (f o g)(x)
(b) (g o f)(x)
(a) (f o g)(x)
$= f(5x+3)$
$= (5x+3)^2 + 1$
$= 25x^2 + 30x + 9 + 1$
$= 25x^2 + 30x + 10$
(b) (g o f)(x)
$= g(x^2 + 1)$
$= 5(x^2 + 1) + 3$
$= 5x^2 + 8$

Also Read

link to this page by copying the following text

Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology

Latest Updates
Synthetic Fibres and Plastics Class 8 Practice questions

Class 8 science chapter 5 extra questions and Answers

Mass Calculator

3 Fraction calculator

Garbage in Garbage out Extra Questions7