physicscatalyst.com logo




Vector Algebra Exercise 10.2




In this page we have Class 12 Maths NCERT Solutions Chapter 10 Vector Algebra for EXERCISE 10.2 . Hope you like them and do not forget to like , social share and comment at the end of the page.

Question 1
For the following vectors, calculate the magnitude of the following.
$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}; \;\;\; \overrightarrow{b} = \hat{2i} – \hat{7j} – \hat{3k}; \;\;\; \overrightarrow{c} = \frac{1}{\sqrt{3}} \;\hat{i} + \frac{1}{\sqrt{3}}\; \hat{j} – \frac{1}{\sqrt{3}}\; \hat{k}$  
Solution
The magnitude are calculated as below
$\left | \overrightarrow{a} \right | = \sqrt{(1) ^{2} + (1) ^{2} + (1) ^{2}} = \sqrt{3} \\ \left | \overrightarrow{b} \right | = \sqrt{(2) ^{2} + (- 7) ^{2} + (- 3) ^{2}} = \sqrt{4 + 49 + 9} = \sqrt{62} \\ \left | \overrightarrow{c} \right | = \sqrt{(\frac{1}{\sqrt{3}}) ^{2} + (\frac{1}{\sqrt{3}}) ^{2} + (\frac{1}{\sqrt{3}}) ^{2}} = 1 \\$  

Question-2
Write two different vectors having same magnitude?
Solution
$\overrightarrow{p} = (2\hat{i} – \hat{j} + 3\hat{k}); \;and\; \overrightarrow{q} = (2\hat{1i} + 3\hat{j} – \hat{k}) \\ It\; can\; be\; observed\; that:\; \\ \left | \overrightarrow{p} \right | = \sqrt{(2) ^{2} + (1) ^{2} + (3) ^{2}} = \sqrt{17} \; and \\ \left | \overrightarrow{q} \right | = \sqrt{(2) ^{2} + (3) ^{2} + (1) ^{2}} = \sqrt{14}$ So, these are two different vectors $\overrightarrow{p} \;and\; \overrightarrow{q}$ having the similar magnitude. They are different as their direction is different.
 
 
Question 3
Write two different vectors having same direction?
Solution
Consider two vectors, $\overrightarrow{p} = \hat{i} + \hat{j} + \hat{k}; \;\;\;and\; \overrightarrow{q} = 3\hat{i} + 3\hat{j} + 3\hat{k} \\ The\; direction\; cosines\; of\; \overrightarrow{p}\; are\; given\; by, \\ l = \frac{1}{\sqrt{(1) ^{2} + (1) ^{2} + (1) ^{2}}} = \frac{1}{\sqrt{3}}, \; m = \frac{1}{\sqrt{(1) ^{2} + (1) ^{2} + (1) ^{2}}} = \frac{1}{\sqrt{3}}, \;and\; n = \frac{1}{\sqrt{(1) ^{2} + (1) ^{2} + (1) ^{2}}} = \frac{1}{\sqrt{3}}$
$The\; direction\; cosines\; of\; \overrightarrow{q}\; are\; given\; by, \\ l = \frac{3}{\sqrt{(3) ^{2} + (3) ^{2} + (3) ^{2}}} = \frac{1}{\sqrt{3}}, \;m = \frac{3}{\sqrt{(3) ^{2} + (3) ^{2} + (3) ^{2}}} = \frac{1}{\sqrt{3}}\; and\; n = \frac{3}{\sqrt{(3) ^{2} + (3) ^{2} + (3) ^{2}}} = \frac{1}{\sqrt{3}}$ $The\; direction\; cosines\; of\; \overrightarrow{p}\; and\; \overrightarrow{q}\; are\; similar.$
Thus, the direction of the two vectors is similar.

Question 4:
Find the values of x and y so that the vectors $2 \hat{i} + 3 \hat{j} \;and\; x \hat{i} + y \hat{j}$ are equal
Solution
Given, $2 \hat{i} + 3 \hat{j} \;and\; x \hat{i} + y \hat{j}$ are equal.
The equivalent components are equal.
So, the value of x = 2 and y = 3.

Question 5
Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (-5, 7).
Solution
Given,
The initial point of the vector A (2, 1) and the terminal point of the vector is B (- 5, 7).
The vector $\overrightarrow{AB} = (- 5 – 2) \hat{i} + (7 – 1) \hat{j} \\ \overrightarrow{AB} = – 7 \hat{i} + 6 \hat{j}$
The vector components of the given vector are $– 7 \hat{i} \;and\; 6 \hat{j}$.
The scalar components of the given vector are -9 and 6.


Question 6
Find the sum of the vectors $\overrightarrow{a} = \hat{i} -2\hat{j} + \hat{k}, \;\;\; \overrightarrow{b} = -2\hat{i} + 4\hat{j} +5 \hat{k}, \;\;and \; \overrightarrow{c} = \hat{i} – 6 \hat{j} – 7\hat{k}$.
Solution
$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = (1 – 2 + 1) \hat{i} + (-2 + 4 – 6) \hat{j} + (1 + 5 – 7) \hat{k} \\ = – 4 \hat{j} – \hat{k}$

Question 7
Find the unit vector in the direction of the vector $ \overrightarrow{a}= \hat{i} + \hat{j} + 2\hat{k}$
Solution
First we need to find the magnitude
$\left | \overrightarrow{a} \right | = \sqrt{(1) ^{2} + (1) ^{2} + (2) ^{2}} = \sqrt{1 + 1 + 4} = \sqrt{6} \\ \hat{a} = \frac{\overrightarrow{a}}{\left | \overrightarrow{a} \right |} = \frac{\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{6}} = \frac{1}{\sqrt{6}} \hat{i} + \frac{1}{\sqrt{6}} \hat{j} + 2\frac{1}{\sqrt{6}} \hat{k} \\ = \frac{1}{\sqrt{6}} \hat{i} + \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k}$  
 

Question 8
Find the unit vector $\overrightarrow{PQ}$ in the direction of vector , where P and Q are the points (1, 2, 3) and (4, 5, 6), respectively.
Solution
Given, points P (1, 2, 3) and Q (4, 5, 6).
$\overrightarrow{PQ} = (4 – 1) \hat{i} + (5 – 2) \hat{j} + (6 – 3) \hat{k} \\ \overrightarrow{PQ} = 3 \hat{i} + 3 \hat{j} + 3 \hat{k} \\ \left | \overrightarrow{PQ} \right | = \sqrt{(3) ^{2} + (3) ^{2} + (3) ^{2}} = \sqrt{9 + 9 + 9} = \sqrt{27} = 3 \sqrt{3} \\ The\; unit\; vector\; in\; the\; direction\; of\; \overrightarrow{PQ}\; is \\ \frac{\overrightarrow{PQ}}{\left | \overrightarrow{PQ} \right |} = \frac{3 \hat{i} + 3 \hat{j} + 3 \hat{k}}{3 \sqrt{3}} = \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k}$

Question 9
For given vectors,$\overrightarrow{a} = 2\hat{i} – \hat{j} + 2\hat{k} \; and\; \overrightarrow{b} = -\hat{i} + \hat{j} – \hat{k}$ , find the unit vector in the direction of the vector $\overrightarrow{a} + \overrightarrow{b}$ .
Solution
$\overrightarrow{a} + \overrightarrow{b} = (2 -1) \hat{i} + (- 1 + 1) \hat{j} + (2 – 1) \hat{k} \\ = \hat{i} + 1 \hat{k} \\ \left | \overrightarrow{a} + \overrightarrow{n} \right | = \sqrt{(1) ^{2} + (1) ^{2} } = \sqrt{1 +1} = \sqrt{2}$ Thus, in the direction of $\overrightarrow{a} + \overrightarrow{b}$, the vector is,
$\frac{(\overrightarrow{a} + \overrightarrow{b})}{\left | \overrightarrow{a} + \overrightarrow{b} \right |} = \frac{ \hat{i} + \hat{k}}{\sqrt{2}} $

 


Related Topics

link to this page by copying the following text

Search Our Website





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology