In this page we have Class 12 Maths NCERT Solutions Chapter 10 Vector Algebra for
EXERCISE 10.2 . Hope you like them and do not forget to like , social share
and comment at the end of the page.
Question-2
Write two different vectors having same magnitude? Solution \overrightarrow{p} = (2\hat{i} – \hat{j} + 3\hat{k}); \;and\; \overrightarrow{q} = (2\hat{1i} + 3\hat{j} – \hat{k}) \\ It\; can\; be\; observed\; that:\; \\ \left | \overrightarrow{p} \right | = \sqrt{(2) ^{2} + (1) ^{2} + (3) ^{2}} = \sqrt{17} \; and \\ \left | \overrightarrow{q} \right | = \sqrt{(2) ^{2} + (3) ^{2} + (1) ^{2}} = \sqrt{14}
So, these are two different vectors \overrightarrow{p} \;and\; \overrightarrow{q} having the similar magnitude. They are different as their direction is different.
Question 3 Write two different vectors having same direction? Solution
Consider two vectors, \overrightarrow{p} = \hat{i} + \hat{j} + \hat{k}; \;\;\;and\; \overrightarrow{q} = 3\hat{i} + 3\hat{j} + 3\hat{k} \\ The\; direction\; cosines\; of\; \overrightarrow{p}\; are\; given\; by, \\ l = \frac{1}{\sqrt{(1) ^{2} + (1) ^{2} + (1) ^{2}}} = \frac{1}{\sqrt{3}}, \; m = \frac{1}{\sqrt{(1) ^{2} + (1) ^{2} + (1) ^{2}}} = \frac{1}{\sqrt{3}}, \;and\; n = \frac{1}{\sqrt{(1) ^{2} + (1) ^{2} + (1) ^{2}}} = \frac{1}{\sqrt{3}} The\; direction\; cosines\; of\; \overrightarrow{q}\; are\; given\; by, \\ l = \frac{3}{\sqrt{(3) ^{2} + (3) ^{2} + (3) ^{2}}} = \frac{1}{\sqrt{3}}, \;m = \frac{3}{\sqrt{(3) ^{2} + (3) ^{2} + (3) ^{2}}} = \frac{1}{\sqrt{3}}\; and\; n = \frac{3}{\sqrt{(3) ^{2} + (3) ^{2} + (3) ^{2}}} = \frac{1}{\sqrt{3}}The\; direction\; cosines\; of\; \overrightarrow{p}\; and\; \overrightarrow{q}\; are\; similar.
Thus, the direction of the two vectors is similar.
Question 4: Find the values of x and y so that the vectors 2 \hat{i} + 3 \hat{j} \;and\; x \hat{i} + y \hat{j} are equal Solution
Given, 2 \hat{i} + 3 \hat{j} \;and\; x \hat{i} + y \hat{j} are equal.
The equivalent components are equal.
So, the value of x = 2 and y = 3.
Question 5 Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (-5, 7). Solution
Given,
The initial point of the vector A (2, 1) and the terminal point of the vector is B (- 5, 7).
The vector \overrightarrow{AB} = (- 5 – 2) \hat{i} + (7 – 1) \hat{j} \\ \overrightarrow{AB} = – 7 \hat{i} + 6 \hat{j}
The vector components of the given vector are – 7 \hat{i} \;and\; 6 \hat{j}.
The scalar components of the given vector are -9 and 6.