physicscatalyst.com logo






Magnetic Effect of Electric Current (Class 10)



In this page we have explained about the Introduction to Magnetic Effect of Electric Current . Hope you like them and do not forget to like , social shar and comment at the end of the page.

Introduction

  • From chapter electricity we know a little bit about electric field $\vec{E}$ and how it is produced at all points around it.
  • Likewise magnets produces magnetic field at all points round it.
  • We already learned about heating effects of electric current in previous chapter about electricity. Now in this chapter we shall study about another phenomenon related to current that is magnetic effects of current.
An electric current carrying wire behaves like a magnet:-
So, we already know that an electric current-carrying wire behaves like a magnet. Let us now describe an experiment that shows the presence of magnetic field near a current carrying wire.
ACTIVITY showing presence of magnetic field near current carrying wire:-
  • This experiment is also called Oersted Experiment.
  • First take a straight thick copper wire and place it between the points X and Y in an electric circuit, as shown in Fig. 1.
    Magnetic field is produced in the presence of electric field
    Figure 1: compass needle is deflected when it is placed near a current carrying wire
  • Now we place a small compass near to this copper wire.
  • After placing the needle note the position of its needle.
  • Now insert the key into the plug to close the circuit and pass the current through the circuit.
  • Since the current is flowing in the circuit now observe the change in the position of the compass needle.
In the above activity we observed that the needle of the compass gets deflected when it is placed near the current carrying conductor. The result of this activity implies that current flowing through copper wire is producing a magnetic effect.
Thus we can say that electricity and magnetism are linked to each other.
Who was Hans Christian Oersted?
Hans Christian Oersted (1777-1851) through his experiments showed that electricity and magnetism are related to each other. His research later used in radio, television etc. The unit of magnetic field strength is name Oersted in his honour.

Magnets and magnetism

  • Magnets have been source of curiosity for ages. You can find magnets in places like laboratories, in toys, magnetic stickers that stick in refrigerator etc.
  • So, what is a magnet? The substances which have the property of attracting small pieces of iron, nickel and cobalt etc. are called magnets and this property of attraction is called magnetism.
  • Most of the metals like copper, gold, silver aluminium etc. are not attracted to magnets.
  • Magnets are found naturally in certain natural rocks and can also be made artificially by certain methods.
  • Artificially made permanent magnets are made in various shapes like bar, rod, disk, ring etc.
  • In a bar, rod and horse shoe magnets north and south poles are dictated by letters N and S or North Pole is indicated by a dot.
  • In disk and ring magnets one face is North Pole and another face is South Pole.
  • Permanent magnets are commonly used as a direction finding compass.
What are magnetic poles?
Magnetic poles refer to the two areas of a magnet where the magnetic effects are the strongest. The poles are generally termed as the north and south poles.

Properties of magnet: 

  • Attracts objects of iron, cobalt and nickel.
  • Force of attraction of a magnet is greater at its poles then in the middle.
  • Like poles of magnets repel each other while unlike poles of magnets attract each other.
  • A free suspended magnet always point towards north and south direction.
  • The pole of a magnet which points toward north direction is called North Pole or north seeking.
  • The pole of a magnet which points toward south direction is called South Pole or south seeking.

Go Back to Class 10 Maths Home page Go Back to Class 10 Science Home page










link to us