- First Enter the values of the mass separated by commas whose center of mass need to be found Example 2,3,4

- Now enter the x-coordinates of these respective masses separated by commas

- Now enter the y-coordinates of these respective masses separated by commas

- Now enter the z-coordinates of these respective masses separated by commas

- If x -coordinate is required only, we can ignore the y and z ones

- If x and y coordinate is required only, we can ignore the z ones

- Click on the calculate button.

$x_{cm} \frac {m_1x_1 + m_2x_2 + m_3x_3 + .... + m_nx_n}{m_1 + m_2 + m_3 + ..... + m_n}$ $y_{cm} \frac {m_1y_1 + m_2y_2 + m_3y_3 + .... + m_ny_n}{m_1 + m_2 + m_3 + ..... + m_n}$ $z_{cm} \frac {m_1z_1 + m_2z_2 + m_3z_3 + .... + m_nz_n}{m_1 + m_2 + m_3 + ..... + m_n}$

Centre of mass is the point where whole mass of the system can be supposed to be concentrated and motion of the system can be defined in terms of the centre of mass . It is the mass weighted average of its components

$x_{cm} =\frac {m_1x_1 + m_2x_2 + m_3x_3 + .... + m_nx_n}{m_1 + m_2 + m_3 + ..... + m_n}$

$y_{cm} =\frac {m_1y_1 + m_2y_2 + m_3y_3 + .... + m_ny_n}{m_1 + m_2 + m_3 + ..... + m_n}$

$z_{cm} =\frac {m_1z_1 + m_2z_2 + m_3z_3 + .... + m_nz_n}{m_1 + m_2 + m_3 + ..... + m_n}$

Four particles of same mass 1 kg lies in x-y plane.The (x,y) coordinates of their positions are (2,2) (3,3),(-1,2) and (-1,-1) respectively. Find the position of the center of mass of the system

Given $m_1=m_2 =m_3=m_4 =1$

$x_1=2$, $x_2=3$,$x_3=-1$, $x_4=-1$

$y_1=2$, $y_2=3$,$y_3=2$, $x_4=-1$

Center of Mass is calculated as

$x_{cm} =\frac {m_1x_1 + m_2x_2 + m_3x_3 + m_4x_4}{m_1 + m_2 + m_3 + m_4}= \frac {1 \times 2 + 1 \times 3 + 1 \times -1 + 1 \times -1}{1 + 1 + 1 + 1}=3/4$

$y_{cm} =\frac {m_1y_1 + m_2y_2 + m_3y_3+ m_4y_4}{m_1 + m_2 + m_3 + m_4}=\frac {1 \times 2 + 1 \times 3 + 1 \times 2 + 1 \times -1}{1 + 1 + 1 + 1}=3/2$

Three particles of masses 1 kg,2 kg and 3 kg respectively lies in x-y-z plane.The (x,y,z) coordinates of their positions are (2,2,1) (3,3,1),(-1,2,3) respectively. Find the position of the center of mass of the system

Given $m_1=1 \ kg,m_2 =2 \ kg ,m_3= 3 \ kg$

$x_1=2$, $x_2=3$,$x_3=-1$

$y_1=2$, $y_2=3$,$y_3=2$

$z_1=1$, $z_2=1$,$z_3=3$

Center of Mass is calculated as

$x_{cm} =\frac {m_1x_1 + m_2x_2 + m_3x_3 }{m_1 + m_2 + m_3 }= \frac {1 \times 2 + 2 \times 3 + 3 \times -1 }{1 + 2 + 3 }=5/6$

$y_{cm} =\frac {m_1y_1 + m_2y_2 + m_3y_3}{m_1 + m_2 + m_3 }=\frac {1 \times 2 + 2 \times 3 + 3 \times 2 }{1 + 2 + 3 }=15/6= 5/2$

$z_{cm} =\frac {m_1z_1 + m_2z_2 + m_3z_3}{m_1 + m_2 + m_3 }=\frac {1 \times 1 + 2 \times 1 + 3 \times 3 }{1 + 2 + 3 }=12/6= 2$

Center of Mass is calculated as

$x_{cm} =\frac {m_1x_1 + m_2x_2 + m_3x_3 + .... + m_nx_n}{m_1 + m_2 + m_3 + ..... + m_n}$

$y_{cm} =\frac {m_1y_1 + m_2y_2 + m_3y_3 + .... + m_ny_n}{m_1 + m_2 + m_3 + ..... + m_n}$

$z_{cm} =\frac {m_1z_1 + m_2z_2 + m_3z_3 + .... + m_nz_n}{m_1 + m_2 + m_3 + ..... + m_n}$

Center of Mass is calculated as

$x_{cm} =\frac {m_1x_1 + m_2x_2 + m_3x_3 + .... + m_nx_n}{m_1 + m_2 + m_3 + ..... + m_n}$

$y_{cm} =\frac {m_1y_1 + m_2y_2 + m_3y_3 + .... + m_ny_n}{m_1 + m_2 + m_3 + ..... + m_n}$

Center of Mass is calculated as

$x_{cm} =\frac {m_1x_1 + m_2x_2 + m_3x_3 + .... + m_nx_n}{m_1 + m_2 + m_3 + ..... + m_n}$

- Acceleration Calculator
- Projectile Motion Calculator
- Angular Acceleration calculator
- Kinetic Energy calculator
- Average velocity calculator

- Center of Mass
- Velocity of centre of mass
- Acceleration of centre of mass
- Kinetic energy of the system of particles
- Linear Momentum of System of particles
- Center Of Mass Frame of Reference

Physics Calculator Maths Calculator Chemistry Calculator