physicscatalyst.com logo




Derivatives in Maths





Definition of Derivative

If \( f(x) \) is a function of \( x \), a is the point in its domain, the derivative of \( f(x) \) at \( a \) is given by the limit:
\[ f'(a) = \lim_{{h \to 0}} \frac{f(a+h) - f(a)}{h} \]
provided this limit exists.
This definition of derivative is also called the first principle of derivative

Derivative of Real Valued Function

If \( y \) is a function of \( x \), the derivative of \( y \) with respect to \( x \) is given by the limit:
\[ \frac{dy}{dx} = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h} \]

(a) It is present if this limit exists.
(b)This definition of derivative is also called the first principle of derivative
(c)The domain of definition of $\frac{dy}{dx}$ is wherever the above limit exists.
(d)There are different notations for derivative of a function
$\frac{dy}{dx}$, $\frac{df(x)}{dx}$

Example $y=x^3$
\[ \frac{dy}{dx} = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}= \lim_{{h \to 0}} \frac{(x+h)^3 - x^3}{h} \]
$= \lim_{{h \to 0}} \frac{x^3+3x^2h+3xh^2+h^3 - x^3}{h}= \lim_{{h \to 0}} {3x^2+3xh+h^2}= 3x^2$

Geometric Interpretation

From a geometric viewpoint, the derivative at a point on the curve of the function represents the slope of the tangent to the curve at that point.

Algebra of derivatives

Multiplication by Constant
$\frac {d}{dx} [cf(x)] = c \frac {d}{dx} f(x) $

Example
$\frac {d}{dx} [2 sinx ] = 2 \frac {d}{dx} sin x =2 cos (x)$

Addition and Subtraction
$\frac {d}{dx} [f(x)+g(x)]=\frac {d}{dx} f(x) + \frac {d}{dx} g(x)$
$\frac {d}{dx} [f(x)-g(x)]=\frac {d}{dx} f(x) - \frac {d}{dx} g(x)$

Example
$\frac {d}{dx} [sinx -cos x ] =  \frac {d}{dx} sin x - \frac {d}{dx} cos x =cos (x) + sin(x)$

Multiplication

$\frac {d}{dx} [f(x)g(x)]=g(x) \frac {d}{dx} f(x) + f(x) \frac {d}{dx} g(x)$

Example
$\frac {d}{dx} [x^2 sinx  ] = x^2 \frac {d}{dx} sin x  + sin x \frac {d}{dx} x^2 =x^2 cos (x) + 2x sin(x)$
Division
  $\frac {d}{dx} [f(x)/g(x)]=\frac {g(x) \frac {d}{dx} f(x) - f(x) \frac {d}{dx} g(x)}{[g(x)]^2} $

Example
$\frac {d}{dx} [sin(x) /x^2]=\frac {x^2 \frac {d}{dx} sin(x)  - sin(x) \frac {d}{dx} x^2}{x^4} $
$=\frac {x^2 cos (x) - 2x sin(x)}{x^4}$
$=\frac {x cos (x) - 2 sin(x)}{x^3}$

Chain Rule
if y = f(u) and u =g(x) ,then
$\frac {dy}{dx} = \frac {dy}{du} \frac {du}{dx}$

Example
$\frac {d}{dx} [sin (x^3)] = \frac {d}{du} sin (u)  \frac {d}{dx} (x^3)= 3x^2 cos (x^3)$

Standard Differentiation formulas and Proofs

(I)$\frac {d}{dx} (c) = 0$  ( Where c is a constant)
Proof
\[ \frac{dy}{dx} = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}= \lim_{{h \to 0}} \frac{c - c}{h}= \lim_{{h \to 0}} 0=0 \]

(II)$\frac {d}{dx} (cx) = c$ ( Where c is a constant)
Proof
\[ \frac{dy}{dx} = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}= \lim_{{h \to 0}} \frac{c(x+h) - cx}{h}= \lim_{{h \to 0}} \frac{ch}{h} =\lim_{{h \to 0}} c = 0 \]

(III)$\frac {d}{dx} (x^n) = nx^{n-1}$
Proof
\[ \frac{dy}{dx} = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}= \lim_{{h \to 0}} \frac{(x+h)^n -x^n}{h} \]
Now By Binomial Theorem
$(x+h)^n =x^n + nx^{n-1) h + ...+ h^n$
Hence
$(x+h)^n -x^n=nx^{n-1) h + ...+ h^n$
Therefore
$=\lim_{{h \to 0}} \frac{nx^{n-1) h + ...+ h^n}{h}= \lim_{{h \to 0}} (nx^{n-1) + ...+ h^{n-1}) = nx^{n-1}$

Derivatives of Trigonometric Functions

Important formula to find the derivative
$\frac {d}{dx} f(x) =\displaystyle \lim_{h \to 0} \frac {f (x+h) - f(x)}{h}$
$\displaystyle \lim_{x \to 0} \frac {sinx}{x}=1$

Derivative of Sine Function
$\frac {d}{dx} (sin x) = cos x $
Proof of sin derivative
$\frac {d}{dx} (sin x) = \displaystyle \lim_{h \to 0} \frac {sin (x+h) - sin x}{h}= \displaystyle \lim_{h \to 0} \frac {2cos (\frac {2x+h}{2}) sin \frac {h}{2}}{h}$
$=\displaystyle \lim_{h \to 0} cos (x + \frac {h}{2}) \displaystyle \lim_{h \to 0} \frac {sin \frac {h}{2}}{\frac {h}{2}} = cos x$
as $\displaystyle \lim_{x \to 0} \frac {sinx}{x}=1$

Derivative of Cos Function
$\frac {d}{dx} (cos x) = -sin x $
Proof of Cos derivative
$\frac {d}{dx} (cos x) = \displaystyle \lim_{h \to 0} \frac {cos (x+h) - cos x}{h}= \displaystyle \lim_{h \to 0} -\frac {2sin (\frac {2x+h}{2}) sin \frac {h}{2}}{h}$
$=-\displaystyle \lim_{h \to 0} sin (x + \frac {h}{2}) \displaystyle \lim_{h \to 0} \frac {sin \frac {h}{2}}{\frac {h}{2}} = -sin x$
as $\displaystyle \lim_{x \to 0} \frac {sinx}{x}=1$

Derivative of Tan Function
$\frac {d}{dx} (tan x) = sec^2x $
Proof of tan derivative
$\frac {d}{dx} (tan x) = \displaystyle \lim_{h \to 0} \frac {tan (x+h) - tan x}{h}= \displaystyle \lim_{h \to 0} \frac {1}{h}[\frac {sin(x+h)}{cos(x+h) }- \frac {sin(x)}{cos(x)}]$
$=\displaystyle \lim_{h \to 0} \frac {1}{h}\frac {sin(x+h)cos (x) - sin(x) cos (x+h)}{cos (x+h) cos x}$
$=\displaystyle \lim_{h \to 0} \frac {1}{h} \frac {sin (x+h -x)}{cos (x+h) cos x} $
$=\displaystyle \lim_{h \to 0} \frac {sin h}{h} \displaystyle \lim_{h \to 0} \frac {1}{cos (x+h) cos x}= sec^2 x$
as $\displaystyle \lim_{x \to 0} \frac {sinx}{x}=1$

Derivative of Cot Function
$\frac {d}{dx} (cot x) = -cosec^2x $

Derivative of Secant Function
$\frac {d}{dx} (sec x) = sec x . tan x $

Derivative of Cosecant Function
$\frac {d}{dx} (cosec x) = -cosec x . cot x$

Derivatives of Exponential Functions


$\frac {d}{dx} (e^x) = e^x$
$\frac {d}{dx} (ln x) = \frac {1}{x}$
$\frac {d}{dx} (log_{10} x) =\frac {1}{x ln 10}$
$\frac {d}{dx} (log_{a} x) =\frac {1}{x ln a}$
$\frac {d}{dx} (a^x) = a^x ln a$


Related Topics

Also Read







Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ