physicscatalyst.com logo




Limits in Maths Notes





Definition of Limits

In mathematical terms, the limit of a function \( f(x) \) as \( x \) approaches a point \( c \) is given by
\[ \lim_{{x \to c}} f(x) = L \]

Here, \( L \) is the value that \( f(x) \) approaches as \( x \) gets closer to \( c \).
The limit of f (x) as x tends to x is to be thought of as the value f (x) should assume at x = c

Another Definition
The formal definition of a limit is as follows: Let \( f(x) \) be a function defined on some open interval containing \( c \), except possibly at \( c \) itself. We say that the limit of \( f(x) \) as \( x \) approaches \( c \) is \( L \), written as
\[ \lim_{{x \to c}} f(x) = L \]

if for every \( \epsilon > 0 \), there exists a \( \delta > 0 \) such that whenever \( 0 < |x - c| < \delta \), then \( |f(x) - L| < \epsilon \).

Left-hand Limit

The left-hand limit of \( f(x) \) as \( x \) approaches \( c \) is denoted by
\[ \lim_{{x \to c^-}} f(x) \]

It is the expected value of f at x = a given the values of f near x to the left of a.

Right-hand Limit

The right-hand limit of \( f(x) \) as \( x \) approaches \( c \) is denoted by
\[ \lim_{{x \to c^+}} f(x) \]

Existence of Limit

For a limit to exist, the left-hand and right-hand limits must be equal, i.e.,
\[ \lim_{{x \to c^-}} f(x) = \lim_{{x \to c^+}} f(x) = \lim_{{x \to c}} f(x) \]

Algebra of Limits

1. Limit of a Sum: Limit of sum of two functions is sum of the limits of the functions
\( \lim_{{x \to c}} [ f(x) + g(x) ] = \lim_{{x \to c}} f(x) + \lim_{{x \to c}} g(x) \)
2.Limit of Difference: Limit of difference of two functions is sum of the limits of the functions
\( \lim_{{x \to c}} [ f(x) - g(x) ] = \lim_{{x \to c}} f(x) - \lim_{{x \to c}} g(x) \)
3. Limit of a Product : Limit of product of two functions is product of the limits of the functions
\( \lim_{{x \to c}} [ f(x) \times g(x) ] = \lim_{{x \to c}} f(x) \times \lim_{{x \to c}} g(x) \)
4 if g(x)=k,then
\( \lim_{{x \to c}} [ f(x) \times k ] = k \lim_{{x \to c}} f(x) \)
5. Limit of a Quotient: Limit of quotient of two functions is quotient of the limits of the functions (whenever the denominator is non zero)
\( \lim_{{x \to c}} \frac{f(x)}{g(x)} = \frac{\lim_{{x \to c}} f(x)}{\lim_{{x \to c}} g(x)} \) (provided \( \lim_{{x \to c}} g(x) \neq 0 \))

Types of Limits

Finite Limits These are limits where the function approaches a particular real number as \( x \) approaches a specific value. For example,
\[ \lim_{{x \to 2}} (x^2 - 4) = 0 \]

Infinite Limits

Here, the function approaches infinity as \( x \) approaches a specific value. For example,
\[ \lim_{{x \to 0}} \frac{1}{x^2} = \infty \]

Limits at Infinity

These limits describe the behavior of a function as \( x \) goes to infinity. For example,
\[ \lim_{{x \to \infty}} \frac{1}{x} = 0 \]

Limit of Polynomial Function

We know that
\[ \lim_{{x \to a}} x = a \]
Now
\[ \lim_{{x \to a}} x^2 = \lim_{{x \to a}} x.x = \lim_{{x \to a}} x \lim_{{x \to a}} x= a.a=a^2 \]
Similarly
\[ \lim_{{x \to a}} x^n = a^n \]

A polynomial function f(x) in one variable x is an algebraic expression in x term as
$f(x)=a_n x^n+a_(n-1) x^(n-1)+a_(n-2) x^(n-2)+⋯………+ax+a_0$
Where $a_n,a_{n-1},....,a,a_0$ are constant and real numbers and $a_n$ is not equal to zero
Limit is calculated as
\[ \lim_{{x \to a}} f(x) =\lim_{{x \to a}} a_n x^n+a_(n-1) x^(n-1)+a_(n-2) x^(n-2)+⋯………+ax+a_0 \]
\[ =a_n \lim_{{x \to a}} x^n + a_(n-1) \lim_{{x \to a}} x^(n-1)+ a_(n-2) \lim_{{x \to a}} x^(n-2)+⋯………+ a \lim_{{x \to a}} x+a_0 \lim_{{x \to a}} \]
\[ =a_n a^n + a_(n-1) a^(n-1)+ a_(n-2) a^(n-2)+⋯………+ a_1 a+a_0 =f(a) \]
Hence
\[ \lim_{{x \to a}} f(x) = f(a) \]

Limit of Rational Function

Rational Function is defined as
$f(x)=\frac {g(x)}{h(x)}$
Where g(x) and h(x) are polynomial function and $h(x) \ne 0$
\[ \lim_{{x \to a}} \frac {g(x)}{h(x)} = \frac { \lim_{{x \to a}} g(x)}{\lim_{{x \to a}} h(x)}= \frac {g(a)}{h(a)} \]

Case A if h(a) =0 and g(a) =0
Now we can write
$g(x) = (x-a)^k g' (x) $
$h(x) = (x-a)^l h' (x) $
if k > l

\[ \lim_{{x \to a}} \frac {g(x)}{h(x)} = \frac { \lim_{{x \to a}} g(x)}{\lim_{{x \to a}} h(x)}=\frac { \lim_{{x \to a}}(x-a)^k g'(x)}{\lim_{{x \to a}} (x-a)^l h'(x)}= \frac {0.g(a)}{h(a)}=0$ \]

If k< l
Limit is undefined
Case B - h(a) =0 and $g(a) \ne 0$
Then Limit is undefined

A general rule that needs to be kept in mind while evaluating limits is the following.
(i) First we check the value of f (a) and g(a).
(ii)If both are 0, then we see if we can get the factor which is causing the terms to vanish, i.e., see if we can write $f(x) = f_1(x) f_2(x)$ so that f1(a) = 0 and $f_2(a) \ne 0$.
(iii)Similarly, we write $g(x) = g_1(x) g_2(x)$, where $g_1(a) = 0$ and $g_2(a) \ne 0$.
(iv) Cancel out the common factors from f(x) and g(x) (if possible) and write
$\frac {f(x)}{g(x)} = \frac {p(x)}{q(x)}$

Special Theorem

Theorem I
\[ \lim_{{x \to a}} \frac {x^n -a^n}{x-a} = na^{n-1} \]

This is valid for when n is positive integers and n is any rational number and a is positive

Proof
$\frac {x^n -a^n}{x-a}= (x^{n–1} + x^{n–2} a + x^{n–3} a^2+ ... + x a^{n–2} + a^{n–1}$
Hence
\[ \lim_{{x \to a}} \frac {x^n -a^n}{x-a} = a^{n – l} + aa^{n–2} +. . . + a^{n–2} (a) +a^{n–l}= na^{n-1} \]

Theorem II Let f and g be two real valued functions with the same domain such that $f (x) \leq g( x)$ for all x in the domain of definition, For some a, if both
\[ \lim_{{x \to a}} f(x) \] and \[ \lim_{{x \to a}} g(x) \]
exists, then
$\lim_{{x \to a}} f(x) \leq \lim_{{x \to a}} g(x)$


Sandwitch Theorem
Let f, g and h be real functions such that
$f (x) \leq g( x) \leq h(x)$ for all x in the common domain of definition.
For some real number a, if
$\lim_{{x \to a}} f(x) =l=\lim_{{x \to a}} h(x)$
then
$\lim_{{x \to a}} g(x) =l$


Limits of Trigonometric Function

we can easily the below relation geometrically
$cos x < \frac {sin x}{x} < 1$ for $ 0 < |x| < \frac {\pi}{2}$

Lets define the limit of two important Theorem based on Above Formula and Sandwitch theorem Theorem I
$\lim_{{x \to 0}} \frac {sin x}{x} =1$
Proof
$\lim_{{x \to 0}} cos x =1$
$\lim_{{x \to 0}} 1 =1$
Therefore from Sandwitch theorem
$\lim_{{x \to 0}} \frac {sin x}{x} =1$

Theorem II
$\lim_{{x \to 0}} \frac {1-cosx}{x}=1$
Proof
$\lim_{{x \to 0}} \frac {1-cosx}{x} =\lim_{{x \to 0}} \frac {2sin^2(x/2)}{x} =\lim_{{x \to 0}} \frac {sin^2(x/2)}{x/2}$
$=\lim_{{x \to 0}} \frac {sin(x/2)}{x/2} sin (x/2) = 1.0 =1$
Therefore
$\lim_{{x \to 0}} \frac {1-cosx}{x}=1$

Theorem III
$\lim_{{x \to 0}} \frac {tan x}{x}=1$
Proof
$\lim_{{x \to 0}} \frac {tanx}{x}=\lim_{{x \to 0}} \frac {sinx}{x cosx}= \lim_{{x \to 0}} \frac {sinx }{x} \lim_{{x \to 0}} \frac {1}{cos x}=1$
Therefore
$\lim_{{x \to 0}} \frac {tan x}{x}=1$

How do I calculate a limit

(a)A limit is undefined if the function doesn't approach a specific value or if it approaches different values from the left and right.
(b) Limits can be calculated using a variety of methods including direct substitution, factorization, rationalization,Theorems stated abive and using L'Hôpital's Rule for indeterminate forms.


Related Topics

Also Read







Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ