Extra questions on Determinants notes for Class 12
Multiple Choice Questions
Question 1
If $x,y \in R$, then the determinant $\Delta=\begin{vmatrix}
cos x & -sin x & 1 \\
sinx & cos x & 1 \\
cos(x+y) & -sin(x+y) & 0 \\
\end{vmatrix}$ lies in
(a) $[-\sqrt 2 , \sqrt 2]$
(b) $[-1 ,1]$
(c) $[-\sqrt 2 , 1]$
(d) $[-1,-\sqrt 2]$
Answer
The correct choice is A. Indeed applying $R_3 -> R_3 - cosy R_1 + siny R_2$, we get
$\Delta=\begin{vmatrix}
cos x & -sin x & 1 \\
sinx & cos x & 1 \\
cos(x+y) & -sin(x+y) & 0 \\
\end{vmatrix}$
$\Delta=\begin{vmatrix}
cos x & -sin x & 1 \\
sinx & cos x & 1 \\
0 & 0 & sin y - cos y \\
\end{vmatrix}$
Now expanding
$\Delta= sin y - cos y = \sqrt 2 sin( y - \frac {\pi}{4})$
Hence $\Delta$ lies in $[-\sqrt 2 , \sqrt 2]$
Question 2
If A,B,C are the angles of the triangle, then the determinant
$\begin{vmatrix}
-1 & cos C & cos B \\
cos C & -1 & Cos A \\
cos B & cos A & -1 \\
\end{vmatrix}$ is equal to
(a) 1
(b) -1
(c) 0
(d) Nones of these
Answer
Doing $C_1 -> aC_1 + bC_2 + cC_3$
$\begin{vmatrix}
-a + bcos C + c cos B & cos C & cos B \\
a cos C -b + ccos A & -1 & Cos A \\
a cos B + bcos A - c & cos A & -1 \\
\end{vmatrix}$
Now we know that in a triangle
a=bcos C + c cos A
b= acos C + c cos A
c= aCos B + b cos A
hence
$\begin{vmatrix}
-a + a & cos C & cos B \\
b -b & -1 & Cos A \\
c - c & cos A & -1 \\
\end{vmatrix}$
$\begin{vmatrix}
0 & cos C & cos B \\
0 & -1 & Cos A \\
0 & cos A & -1 \\
\end{vmatrix} =0$
Question 3
if $f(x) = \begin{vmatrix}
(1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\
(1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\
(1+x)^{41} & (1+x)^{43} & (1+x)^{47} \\
\end{vmatrix} = A + Bx + Cx^2 +$...
(a)0
(b)1
(c)-1
(d)Nones of these
Question 4
if $\Delta = \begin{vmatrix}
1 & 1 & 1 \\
^nC_1 & ^{n+1}C_1 & ^{n+2}C_1 \\
^nC_2 & ^{n+2}C_2 & ^{n+4}C_2 \\
\end{vmatrix} $,then what is the vale of it
(a) 4
(b) 8
(c) dependent on n
(d) None of these
Question 9
Using properties of determent ,show that triangle ABC is isoceles if
$\begin{vmatrix}
1 & 1 & 1 \\
1+ cos A & 1 + cos B & 1 + cos C \\
cos^2A + cos A & cos^2B + cos B & cos^2C + cos C \\
\end{vmatrix} = 0$
Question 11
Prove using properties of determinants
$\begin{vmatrix}
b+c & a & a \\
b & c+a & b \\
c & c & a+b \\
\end{vmatrix} = 4abc$
Question 12
Prove using properties of determinants
$\begin{vmatrix}
a^2 & bc & ac + c^2 \\
a^2 +ab & b^2 & ac \\
ab & b^2 + bc & c^2 \\
\end{vmatrix} = 4a^2b^2c^2$