physicscatalyst.com logo




Properties of Determinants




Properties of Determinants

(1) The value of the determinant remains unchanged if its rows and columns are interchanged.
\[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} \]
Verification
LHS=a(ei - fh) -b(di - fg) + c(dh - eg)
RHS (expanding along column C1)=a(ei - fh) -b(di - fg) + c(dh - eg)

(2)If we interchange any two rows (or columns), then sign of determinant changes.
\[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -\begin{vmatrix} d & e & f \\ a & b & c \\ g & h & i \end{vmatrix} \]
Verification
We can easily proof this by expanding
LHS=a(ei - fh) -b(di - fg) + c(dh - eg)=aei-afh=bdi+bfg+cdh-ceg
RHS= d(bi - ch) -e(ai - cg) + f(ah - bg)=dbi-dch-aei+ecg+fah-fbg=-(aei-afh=bdi+bfg+cdh-ceg)

(2)If any two rows (or columns) of a determinant are identical (all corresponding elements are same), then value of determinant is zero.
Proof If we interchange the identical rows (or columns) of the determinant $\Delta$, then $\Delta$ does not change. However, by above property, it follows that $\Delta$ has changed its sign
$\Delta= - \Delta$
hence $\Delta=0$

(3)If we multiply each element of a row or a column of a determinant by constant k, then value of determinant is multiplied by k.
\[ A= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] \[ B= \begin{vmatrix} ka & kb & kc \\ d & e & f \\ g & h & i \end{vmatrix} = k \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} =kA \]
Verification
A=a(ei - fh) -b(di - fg) + c(dh - eg)=aei-afh=bdi+bfg+cdh-ceg
B=ka(ei - fh) -kb(di - fg) + kc(dh - eg)=k(aei-afh=bdi+bfg+cdh-ceg)
Similarly
\[ C=|kA|= \begin{vmatrix} ka & kb & kc \\ kd & ke & kf \\ kg & kh & ki \end{vmatrix} = k^3 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} =k^3A \]

(4) If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants
\[ \begin{vmatrix} a+k & b+k & c+k \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} k & k & k \\ d & e & f \\ g & h & i \end{vmatrix} \]
Verification
We can easily proof this by expanding
LHS=(a+k)(ei - fh) -(b+k)(di - fg) + (c+h)(dh - eg)=a(ei - fh) -b(di - fg) + c(dh - eg) + k(ei - fh) -k(di - fg) + k(dh - eg)
RHS=a(ei - fh) -b(di - fg) + c(dh - eg) + k(ei - fh) -k(di - fg) + k(dh - eg)

(5)If to each element of a row or a column of a determinant the equimultiples of corresponding elements of other rows or columns are added, then value of determinant remains same
\[ A= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a+kd & b+ke & c+kf \\ d & e & f \\ g & h & i \end{vmatrix} \]
Verification
RHS= \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} kd & ke & kf \\ d & e & f \\ g & h & i \end{vmatrix} \]
$=\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + k\begin{vmatrix} d & e & f \\ d & e & f \\ g & h & i \end{vmatrix} $
As second determinant is having same values, so it is zero
Hence
$=\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} $

Also Read





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology


Latest Updates
Synthetic Fibres and Plastics Class 8 Practice questions

Class 8 science chapter 5 extra questions and Answers

Mass Calculator

3 Fraction calculator

Garbage in Garbage out Extra Questions7