In this page we have Class 12 Maths NCERT Solutions Chapter 2 Inverse Trigonometric Functions for
EXERCISE 2.2 . Hope you like them and do not forget to like , social share
and comment at the end of the page.
Important Formula’s
Prove the following
Question 1. $3 \sin ^{-1} = \sin ^{-1}(3x - 4x^{3}) , \; x \in \left [ -\frac{1}{2}, \frac{1}{2} \right ]$
Solution
Let sin
-1 x = y, then x = sin y
We get,
RHS = $\sin ^{-1} (3x - 4x^{3 }) = \sin ^{-1} (3 \sin y - 4 \sin^{3} y )\\$
$= \\\sin ^{-1} (\sin 3 y) = 3 y = 3 \sin^{-1}x$
= LHS
Question 2. $3 \cos ^{-1} x = cos ^{-1}(4x^{3} - 3x), x \in \left [ \frac{1}{2}, 1 \right ]$
Solution
Let cos
-1 x = y, then x = cos y
We get,
RHS = $\cos ^{-1} (4x^{3} - 3x) = cos^{-1}(4cos^{3} y - 3cos y)$
$= \\\cos ^{-1} (cos 3 y ) = 3 y = 3 cos^{-1} x$
= LHS
Question 3. Show that $tan ^{-1} \frac{2}{11} + \tan ^{-1} \frac{7}{24} = \tan ^{-1} \frac{1}{2}$
Solution
LHS = $tan ^{-1} \frac{2}{11} + \tan ^{-1} \frac{7}{24} $
$= tan ^{-1} \left ( \frac{\frac{2}{11} + \frac{7}{24}}{1 - \frac{2}{11} \times \frac{7}{24}} \right ) = \tan^{-1} \left (\frac{\frac{48 + 77}{11 \times 24}}{\frac{11 \times 24 - 14}{11 \times 24}} \right )\\$
$\\= tan ^{-1} \frac{48 + 77}{264 - 14} = \tan^{-1} \frac{125}{251} = \tan^{-1} \frac{1}{2}$ = RHS
Question 4. Show that $2 \tan^{-1} \frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$
Solution
LHS = $2 \tan^{-1} \frac{1}{2} + \tan^{-1}\frac{1}{7} $
$= \tan^{-1} \left [ \frac{2 \times \frac{1}{2}}{1 - \left ( \frac{1}{2} \right )^{2}} \right ] + \tan ^{-1} \frac{1}{7} = \tan ^{-1} \frac{1}{\left ( \frac{3}{4} \right )} + \tan^{-1} \frac{1}{7}\\$
$\\= \tan^{-1} \frac{4}{3} + \tan^{-1} \frac{1}{7} = \tan^{-1}\left ( \frac{\frac{4}{3} + \frac{1}{7}}{1 - \frac{4}{3} \times \frac{1}{7}} \right )\\$
$\\= \tan^{-1} \left ( \frac{\frac{28 + 3}{3 \times 7}}{\frac{3 \times 7 -4}{3 \times 7}} \right ) = \tan^{-1} \frac{28 + 3}{21 - 4} = tan^{-1} \frac{31}{17} = RHS$
Write the following functions in the simplest form
Question 5. $\tan^{-1}\frac{\sqrt{1 + x^{2}} - 1}{x}, \; x \neq 0$
Solution
Let x = tan y
$ = \tan^{-1}\frac{\sqrt{1 + x^{2}} - 1}{a}$ = $\tan^{-1} \frac{\sqrt{1 + \tan^{2}y } - 1}{\tan y } \\$
$\\ = \tan^{-1} \left ( \frac{ \sec y - 1 }{\tan y } \right ) = \tan^{-1} \left ( \frac{1 - \cos y }{\sin y } \right )\\$
$\\\tan^{-1} \left ( \frac{2\sin^{2}\frac{y }{2}}{2\sin\frac{y }{2}\cos\frac{y }{2}}\right ) = \tan^{-1}\left ( \tan \frac{y }{2} \right )\\$
$\\= \frac{y }{2} = \frac{1}{2}\tan^{-1}x$
Question 6. $\tan^{-1}\frac{1}{\sqrt{x^{2}-1}}$, |x|> 1
Solution:
Let x = csc y
$\tan^{-1}\frac{1}{\sqrt{x^{2}-1}} = \tan^{-1}\frac{1}{\sqrt{\csc^{2}y -1}} $
$=\tan^{-1}\frac{1}{ \cot y } = \tan^{-1} \tan y = y = \csc ^{-1}x $
$= \frac{\pi}{2} - sec^{-1}x$
Question 7. $\tan^{-1} \left ( \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right ), x < \pi,$
Solution
$\tan^{-1} \left ( \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right ) = \tan^{-1} \left ( \sqrt{\frac{2 \sin^{2}\frac{x}{2}}{2 \cos^{2}\frac{x}{2}}} \right ) \\$
$=\\\tan^{-1} \left ( \sqrt{\tan^{2}\frac{x}{2}} \right ) = \tan^{-1}\left ( \tan \frac{x}{2} \right ) = \frac{x}{2}$
Question 8. $\tan^{-1} \left ( \frac{\cos x - \sin x}{\cos x + \sin x} \right ), 0 < x < \pi$
Solution
$ \tan^{-1} \left ( \frac{\cos x - \sin x}{\cos x + \sin x} \right ) = \tan^{-1} \left ( \frac{1 - \frac{\sin x}{\cos x}}{1 + \frac{\sin x}{\cos x}} \right ) = \tan^{-1} \left ( \frac{1 - \tan x}{1 + \tan x} \right )\\$
$=\\\tan^{-1} \left ( \frac{1 - \tan x}{1 + 1.\tan x} \right ) = \tan^{-1} \left ( \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4}.\tan x}\right )\\$
$=\\\tan^{-1} \left [ \tan \left ( \frac{\pi}{4} - x \right )\right ] = \frac{\pi}{4} - x$
Question 9: $\tan^{-1} \frac{a}{\sqrt{x^{2} - a^{2}}}, \left | a \right | < x$
Solution
Let a = x sin y
$\tan^{-1} \frac{a}{\sqrt{x^{2} - a^{2}}} = \tan^{-1} \left ( \frac{x\sin y }{\sqrt{x^{2} - x^{2}\sin^{2}y }} \right ) = \tan^{-1}\left ( \frac{x\sin y }{x \sqrt{1 - \sin^{2}y }} \right ) \\$
$=\\\tan^{-1} \left ( \frac{x \sin y }{x \sin y} \right ) = tan ^{-1} (\tan y ) = y = \sin ^{-1} \frac{a}{x}$
Question 10.: $\tan^{-1} \left ( \frac{3x^{2}a - a^{3}}{x^{3} - 3xa^{2}} \right ) , x > 0; \frac{-x}{\sqrt{3}} \leq a\frac{x}{\sqrt{3}}$
Solution
Let a = x tan y
$\tan^{-1} \left ( \frac{3x^{2}a - a^{3}}{x^{3} - 3xa^{2}} \right ) = \tan^{-1} \left ( \frac{3x^{2}.x \tan y - x^{3}\tan^{3}y }{x^{3} - 3x.x^{2}\tan^{2}y } \right ) \\$
$=\\\tan^{-1} \left ( \frac{3x^{3} \tan y - x^{3}\tan^{3}y }{x^{3} - 3x^{3}\tan^{2}y } \right ) = \tan^{-1} \left ( \frac{3 \tan y - \tan^{3}y}{1 - 3\tan^{2}y } \right ) \\$
$=\tan^{-1} \left ( \tan 3 y \right ) = 3 y = 3 tan ^{-1} \frac{a}{x}$
Find the values of each of the following
Question 11. Solve $\tan^{-1}\left [ 2\cos \left ( 2 \sin^{-1} \frac{1}{2} \right ) \right ]$
Solution
$\tan^{-1}\left [ 2\cos \left ( 2 \sin^{-1} \frac{1}{2} \right ) \right ] = \tan^{-1}\left [ 2\cos \left ( 2 \sin^{-1} \left ( \sin \frac{\pi}{6} \right ) \right ) \right ] \\$
$=\\\tan^{-1}\left [ 2\cos \left ( 2 \times \frac{\pi}{6} \right ) \right ] = \tan^{-1} \left [ 2 \cos \left ( \frac{\pi}{3} \right ) \right ] = \tan^{-1} \left [ 2 \times \frac{1}{2} \right ]\\$
$=\tan^{-1}\left [ 1 \right ] = \frac{\pi}{4}$
Question 12. Solve $\cot \left (\tan^{-1} a + \cot ^{-1} a \right )$
Solution
$\cot \left (\tan^{-1} a + \cot ^{-1} a \right ) = \cot \left( \frac{\pi}{2} \right)$
= 0
Find the values of each of the expressions in Exercises 16 to 18.
Question 16 sin
-1 (sin 2π/3)
Solution
sin
-1 (sin 2π/3)
Now We know that sin
-1 (sin x) = x if x in [π/2, -π/2], which is the principal value branch of sin
-1 x.
Now 2π/3 is not in [π/2, -π/2],So
= sin
-1 [(sin π - 2π/3)]
= sin
-1 [sin (π/3)]
= π/3
Question 17 tan
-1 (tan 3π/4)
Solution
tan
-1 (tan 3π/4)
= tan
-1 [tan (3π/4)]
= tan
-1 [tan (π - π/4)]
= tan
-1 [-tan (π/4)]
= tan
-1 [ -tan (π/4)]
= -π/4
Question 18 tan [sin
-1 (3/5) + cot
-1 (3/2) ]
Solution
let x=sin
-1 (3/5), sinx= 3/5 , cos x=(1-sin
2 x)
1/2 = 4/5
So tanx=3/4
or x=tan
-1 (3/4)
Now cot
-1 (3/2) = tan
-1 (2/3)
So
tan [sin
-1 (3/5) + cot
-1 (3/2) ]
=tan [tan
-1 (2/3) + tan
-1 (2/3) ]
=tan [tan
-1 (17/6)]
=17/6
Question 19 cos
-1 [cos (7π/6)] is equal to
(A) 7π/6
(B) 5π/6
(C) π/3
(D) π/6
Solution
= cos
-1 [cos (2π - 5π/6)]
= cos
-1 [cos (5π/6)]
= 5π/6
Hence the correct option is (B)
Question 20 sin [(π/3) - sin
-1 (-1/2)] is equal to
(A) 1/2
(B) 1/3
(C) 1/4
(D) 1
Solution
sin [(π/3) - sin
-1 (-1/2)]
=sin [(π/3) - sin
-1 sin (-π/6)]
=sin [(π/3) +(π/6) ]
=sin (π/2)
=1
Hence the correct option is (D)
Question 21 tan
-1 √3 - cot
-1 (-√3) is equal to
(A) π
(B) -π/2
(C) 0
(D) 2√3
Solution
tan
-1 √3 =x
or tan (x) =√3
or x= π/3( Principle Range)
cot
-1 (-√3) =y
or cot y= -√3
or y = 5π/6 ( Principle Range)
tan
-1 √3 - cot
-1 (-√3)
= π/3 - 5π/6
=-π/2
Hence the correct option is (B)
Also Read
Notes
NCERT Solutions & Assignments
Please enable JavaScript to view the comments powered by Disqus.
Go back to Class 12 Main Page using below links
Class 12 Maths
Class 12 Physics
Class 12 Chemistry
Class 12 Biology