Processing math: 100%
physicscatalyst.com logo




Properties of Inverse Trigonometric Functions





Table Of Contents


Properties of Inverse Trigonometric Functions

  • In last page,we cover about what are Inverse Trigonometric Functions and how they are used to find the angles corresponding to given trigonometric ratios, which is an essential concept in mathematics, physics, and engineering
  • In this article, we will discuss the properties of these inverse trigonometric functions.
  • It may be mentioned here that these results are valid within the principal value branches of the corresponding inverse trigonometric functions and wherever they are defined.
  • Some results may not be valid for all values of the domains of inverse trigonometric functions

Inverse of Negative x

sin1(x)=sin1(x)
cos1(x)=πcos1(x)
tan1(x)=tan1(x)
sec1(x)=πsec1(x)
cosec1(x)=cosec1(x)
cot1(x)=πcot1(x)
Lets see the proof of one of them
Proof on Sin
Let sin1(x)=y
Then x=siny
or x=siny
or x=sin(y)
Hence sin1x=y=sin1(x)
Similary we can prove for others

Reciprocal of x

sin1(1x)=cosec1(x)
cos1(1x)=sec1(x)
tan1(1x)=cot1(x)

Complementary Inverse function

sin1(x)+cos1(x)=π2
sec1(x)+cosec1(x)=π2
tan1(x)+cot1(x)=π2

Addition of Same Inverse function

sin1(x)+sin1(y)=sin1(x1y2+y1x2) if x,y0, x2+y21
sin1(x)+sin1(y)=πsin1(x1y2+y1x2) if x,y0, x2+y2>1
sin1(x)sin1(y)=sin1(x1y2y1x2) if x,y0, x2+y21
sin1(x)sin1(y)=πsin1(x1y2y1x2) if x,y0, x2+y2>1
cos1(x)+cos1(y)=cos1(xy1y21x2) if x,y0, x2+y21
cos1(x)+cos1(y)=πcos1((xy1y21x2) if x,y0, x2+y2>1
cos1(x)cos1(y)=cos1(xy+1y21x2) if x,y0, x2+y21
cos1(x)cos1(y)=πcos1(xy+1y21x2) if x,y0, x2+y2>1
tan1(x)+tan1(y)=tan1(x+y1xy) , if x,y>0, xy<1
tan1(x)+tan1(y)=π+tan1(x+y1xy) , if x,y>0, xy>1
tan1(x)+tan1(y)=tan1(x+y1xy)π , if x<0,y>0, xy>1
tan1(x)tan1(y)=tan1(xy1+xy)π , if xy>1
tan1(x)+tan1(y)+tan1(z)=tan1(x+y+zxyz1xyyzxz)

Double angle identity for Inverse functions

2sin1(x)=sin1(2x1x2) if 12x12
2cos1(x)=cos1(2x21)
2tan1(x)=tan1(2x1x2) if $ -1 2tan1(x)=sin1(2x1+x2) if |x|1
2tan1(x)=cos1(1x21+x2) if x0
3sin1(x)=sin1(3x4x3)
3cos1(x)=cos1(4x33x)
3tan1(x)=tan1(3xx313x2)

Odd and Even Properties

Arcsine and arctangent are odd functions
sin1(x)=sin1(x)
tan1(x)=tan1x

Also Read





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology


Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ