In this page we have Class 12 Maths Continuity and Differentiability NCERT Solutions Exercise 5.4 . Hope you like them and do not forget to like , social share
and comment at the end of the page.
Differentiate the following w.r.t. x
Question 1
$\frac{e^{x}}{\sin x}$
Solution
Let y=$\frac{e^{x}}{\sin x}$
Using quotient rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\sin x.\frac{\mathrm{d} }{\mathrm{d} x}(e^{x})-e^{x}.\frac{\mathrm{d} }{\mathrm{d} x}(\sin x)}{\sin^{2} x}$
$=\frac{\sin x.(e^{x})-e^{x}.(\cos x)}{\sin^{2} x}$
$=\frac{e^{x}(\sin x-\cos x)}{\sin^{2} x},x\neq n\pi ,n\in \mathbb{Z}$
Question 2
$e^{\sin ^{-1}x}$
Solution
Let y=$y=e^{\sin ^{-1}x}$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}(e^{\sin ^{-1}x})$
$ \frac{\mathrm{d} y}{\mathrm{d} x}=e^{\sin^{-1}x}.\frac{\mathrm{d} }{\mathrm{d} x}(\sin^{-1}x)$
$=e^{\sin^{-1}x}.\frac{1}{\sqrt{1-x^{2}}}$
$=\frac{e^{\sin^{-1}x}}{\sqrt{1-x^{2}}}$
$\frac{\mathrm{d} y}{\mathrm{d}x}=\frac{e^{\sin^{-1}x}}{\sqrt{1-x^{2}}},x\in (-1,1)$
Question 3
$e^{x^{3}}$
Solution
Let y=$e^{x^{3}}$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}(e^{x^{3}})=e^{x^{3}}.3x^{2}=3x^{2}.e^{x^{3}}$
Question 4
$\sin (\tan^{-1} e^{-x})$
Solution
Let y=$\sin (\tan^{-1} e^{-x})$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[\sin (\tan^{-1} e^{-x})]$
$=\cos (\tan^{-1} e^{-x}).\frac{\mathrm{d} }{\mathrm{d} x}(\tan^{-1} e^{-x})$
$=\cos (\tan^{-1} e^{-x}).\frac{1}{1+(e^{-x})^{2}}(\tan^{-1} e^{-x}).\frac{\mathrm{d} }{\mathrm{d} x}(e^-{x})$
$=\frac{\cos (\tan^{-1} e^{-x})}{1+e^{-2x}}.e^{-x}.\frac{\mathrm{d} }{\mathrm{d} x}(-x)$
$=-\frac{\cos (\tan^{-1} e^{-x})}{1+e^{-2x}}.e^{-x}$
Question 5
$log(\cos e^{x})$
Solution
Let y=$log(\cos e^{x})$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[log(\cos e^{x})]$
$=\frac {1}{\cos e^{x}} .\frac{\mathrm{d} }{\mathrm{d} x}(\cos e^{x})$
$=\frac {1}{\cos e^{x}} .(-\sin e^{x}) \frac{\mathrm{d} }{\mathrm{d} x}(e^{x})$
$=-\frac{\sin e^{x}}{\cos e^{x}}.(e^{x})$
$=-\tan e^x.(e^{x})$
Question 6
$e^{x} +e^{x^2}+e^{x^3}+e^{x^4}+e^{x^5}$
Solution
Let y=$e^{x} +e^{x^2}+e^{x^3}+e^{x^4}+e^{x^5}$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[e^{x} +e^{x^2}+e^{x^3}+e^{x^4}+e^{x^5}]$
$=\frac{\mathrm{d} }{\mathrm{d} x} e^{x} + \frac{\mathrm{d} }{\mathrm{d} x}e^{x^2}+ \frac{\mathrm{d} }{\mathrm{d} x} e^{x^3}+ \frac{\mathrm{d} }{\mathrm{d} x} e^{x^4}+\frac{\mathrm{d} }{\mathrm{d} x}e^{x^5}$
$=e^{x} +2xe^{x^2}+3x^2 e^{x^3}+4x^3 e^{x^4}+5x^4 e^{x^5}$
Question 7
$\sqrt{e^ {\sqrt x}}$
Solution
Let $y=\sqrt{e^ {\sqrt x}}$
Then $y^{2}=e^ {\sqrt x}$
Using chain rule, we have
$2y\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[e^ {\sqrt x}]$
$2y\frac{\mathrm{d} y}{\mathrm{d} x}=e^ {\sqrt x}\frac{\mathrm{d} }{\mathrm{d} x} \sqrt x$
$2y\frac{\mathrm{d} y}{\mathrm{d} x}=e^ {\sqrt x} \frac {1}{2\sqrt x}$
$\frac{\mathrm{d} y}{\mathrm{d} x}=e^ {\sqrt x} \frac {1}{4y\sqrt x}$
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac {e^ {\sqrt x}}{4\sqrt{xe^ {\sqrt x}}}$
Question 8
$log(log x), x > 1$
Solution
Let $y=log(log x)$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{1}{log x}\frac{\mathrm{d} }{\mathrm{d} x} log x$
$=\frac{1}{log x}\frac{1}{x}$
$=\frac{1}{xlog x}$
Related Topics
link to this page by copying the following text
Go back to Class 12 Main Page using below links
Class 12 Maths
Class 12 Physics
Class 12 Chemistry
Class 12 Biology