physicscatalyst.com logo




Class 12 Maths Continuity and Differentiability NCERT Solutions Exercise 5.4




In this page we have Class 12 Maths Continuity and Differentiability NCERT Solutions Exercise 5.4 . Hope you like them and do not forget to like , social share and comment at the end of the page.

Differentiate the following w.r.t. x


 
Question 1
$\frac{e^{x}}{\sin x}$
Solution
Let y=$\frac{e^{x}}{\sin x}$
Using quotient rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\sin x.\frac{\mathrm{d} }{\mathrm{d} x}(e^{x})-e^{x}.\frac{\mathrm{d} }{\mathrm{d} x}(\sin x)}{\sin^{2} x}$
$=\frac{\sin x.(e^{x})-e^{x}.(\cos x)}{\sin^{2} x}$
$=\frac{e^{x}(\sin x-\cos x)}{\sin^{2} x},x\neq n\pi ,n\in \mathbb{Z}$  

Question 2
$e^{\sin ^{-1}x}$
Solution

Let y=$y=e^{\sin ^{-1}x}$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}(e^{\sin ^{-1}x})$
$ \frac{\mathrm{d} y}{\mathrm{d} x}=e^{\sin^{-1}x}.\frac{\mathrm{d} }{\mathrm{d} x}(\sin^{-1}x)$
$=e^{\sin^{-1}x}.\frac{1}{\sqrt{1-x^{2}}}$
$=\frac{e^{\sin^{-1}x}}{\sqrt{1-x^{2}}}$
$\frac{\mathrm{d} y}{\mathrm{d}x}=\frac{e^{\sin^{-1}x}}{\sqrt{1-x^{2}}},x\in (-1,1)$
 
 
Question 3
$e^{x^{3}}$
Solution
Let y=$e^{x^{3}}$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}(e^{x^{3}})=e^{x^{3}}.3x^{2}=3x^{2}.e^{x^{3}}$  
 
Question 4
$\sin (\tan^{-1} e^{-x})$
Solution
Let y=$\sin (\tan^{-1} e^{-x})$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[\sin (\tan^{-1} e^{-x})]$
$=\cos (\tan^{-1} e^{-x}).\frac{\mathrm{d} }{\mathrm{d} x}(\tan^{-1} e^{-x})$
$=\cos (\tan^{-1} e^{-x}).\frac{1}{1+(e^{-x})^{2}}(\tan^{-1} e^{-x}).\frac{\mathrm{d} }{\mathrm{d} x}(e^-{x})$
$=\frac{\cos (\tan^{-1} e^{-x})}{1+e^{-2x}}.e^{-x}.\frac{\mathrm{d} }{\mathrm{d} x}(-x)$
$=-\frac{\cos (\tan^{-1} e^{-x})}{1+e^{-2x}}.e^{-x}$

Question 5
$log(\cos e^{x})$
Solution
Let y=$log(\cos e^{x})$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[log(\cos e^{x})]$
$=\frac {1}{\cos e^{x}} .\frac{\mathrm{d} }{\mathrm{d} x}(\cos e^{x})$
$=\frac {1}{\cos e^{x}} .(-\sin e^{x}) \frac{\mathrm{d} }{\mathrm{d} x}(e^{x})$
$=-\frac{\sin e^{x}}{\cos e^{x}}.(e^{x})$
$=-\tan e^x.(e^{x})$


Question 6
$e^{x} +e^{x^2}+e^{x^3}+e^{x^4}+e^{x^5}$
Solution
Let y=$e^{x} +e^{x^2}+e^{x^3}+e^{x^4}+e^{x^5}$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[e^{x} +e^{x^2}+e^{x^3}+e^{x^4}+e^{x^5}]$
$=\frac{\mathrm{d} }{\mathrm{d} x} e^{x} + \frac{\mathrm{d} }{\mathrm{d} x}e^{x^2}+ \frac{\mathrm{d} }{\mathrm{d} x} e^{x^3}+ \frac{\mathrm{d} }{\mathrm{d} x} e^{x^4}+\frac{\mathrm{d} }{\mathrm{d} x}e^{x^5}$
$=e^{x} +2xe^{x^2}+3x^2 e^{x^3}+4x^3 e^{x^4}+5x^4 e^{x^5}$

Question 7
$\sqrt{e^ {\sqrt x}}$
Solution
Let $y=\sqrt{e^ {\sqrt x}}$
Then $y^{2}=e^ {\sqrt x}$ Using chain rule, we have
$2y\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}[e^ {\sqrt x}]$
$2y\frac{\mathrm{d} y}{\mathrm{d} x}=e^ {\sqrt x}\frac{\mathrm{d} }{\mathrm{d} x} \sqrt x$
$2y\frac{\mathrm{d} y}{\mathrm{d} x}=e^ {\sqrt x} \frac {1}{2\sqrt x}$
$\frac{\mathrm{d} y}{\mathrm{d} x}=e^ {\sqrt x} \frac {1}{4y\sqrt x}$
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac {e^ {\sqrt x}}{4\sqrt{xe^ {\sqrt x}}}$

Question 8
$log(log x), x > 1$
Solution
Let $y=log(log x)$
Using chain rule, we have
$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{1}{log x}\frac{\mathrm{d} }{\mathrm{d} x} log x$
$=\frac{1}{log x}\frac{1}{x}$
$=\frac{1}{xlog x}$

 


Also Read





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology


Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ